Measuring Node Contribution to Community Structure with Modularity Vitality

Fragmentation of the PA Road Network. Our measures overlap, clearly fragmenting the network fastest.

Abstract

Community-aware centrality is an emerging research area in network science concerned with the importance of nodes in relation to community structure. Measures are a function of a network’s structure and a given partition. Previous approaches extend classical centrality measures to account for community structure with little connection to community detection theory. In contrast, we propose cluster-quality vitality measures, i.e., modularity vitality, a community-aware measure which is well-grounded in both centrality and community detection theory. Modularity vitality quantifies positive and negative contributions to community structure, which indicate a node’s role as a community bridge or hub. We derive a computationally efficient method of calculating modularity vitality for all nodes in O(M + NC) time, where C is the number of communities. We systematically fragment networks by removing central nodes, and find that modularity vitality consistently outperforms existing community-aware centrality measures. Modularity vitality is over 8 times more effective than the next-best method on a million-node infrastructure network. This result does not generalize to social media communication networks, which exhibit extreme robustness to all community-aware centrality attacks. This robustness suggests that user-based interventions to mitigate misinformation diffusion will be ineffective. Finally, we demonstrate that modularity vitality provides a new approach to community-deception.

Publication
In IEEE Transactions on Network Science and Engineering
Tom Magelinski, PhD
Tom Magelinski, PhD
Senior Data Scientist - Information Extraction and Generative AI

I build AI systems that help domain experts understand vast amounts of data through state-of-the-art techniques from natural language processing, generative modeling, graph ML, and network science. I’m particularly interested researching and developing techniques to combine NLP and graph-based approaches to capture complex relationships in unstructured data.

Related