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Abstract
Network Science provides a framework to understand the large-scale discussions that happen on
social media and their impact on society. However, a standard network model of a conversational
network destroys the context that users are interacting within. First, the interactional context is
destroyed. The interactional component of context includes the content of the conversation in
which the users are interacting. When interactional context is not accounted for, separate dis-
cussions are combined into one big network, artificially inflating the number of nodes and edges
in the network. This leads to inaccurate information about conversation structure and important
actors. Next, the personal context is destroyed. The personal component of context includes
the attributes of the users involved, as observed through their self-descriptions. Long-standing
social theory of offline social communities such as self-categorization place great importance on
personal context. Thus, this context needs to be accounted for to test these theories in the social
media setting.

This thesis provides the theory and methodologies needed to account for both interactional
and personal contexts which were previously lost in network analysis of social media conver-
sations. Specifically, I study the importance of these contexts as they relate to community dy-
namics. I find that network structure is indeed dependent on interactional context, indicating that
existing non-contextualized analyses could be improved. When investigating personal context,
I find that the long-standing theory of self-categorization can be extended from offline social
communities to massive online communities, with some important limitations. Taken together,
the dynamic contextualized analysis outlined in this thesis furthers our understanding of attribute
salience in online interactions. Each of these analyses is performed on multiple case studies,
providing both validation and a set of examples used to detail a list of best practices for contex-
tualized network analysis.
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Introduction

Overarching Thesis Goal

Many important problems rely on a strong understanding of online communities, especially in
the area of social cybersecurity. However, current methods give an obscured view of online com-
munities because they do not account for different contexts of interactions occurring in the data.
This phenomenon is illustrated in Figure 1, using the Reopen America discussion as an example.
The “mixed” network in Figure 1, corresponds to the type of network that current methodologies
use to understand social communities. Nodes represent users, and they are connected when they
interact directly with each other, e.g., when one user replies to another user’s Tweet. The network
is “mixed” in that it combines all of the data into a single network. However, the data is actually
comprised of three separate discussions, one about protests, one about strategy, and one about
BLM. Upon separating out the networks by the context in which connections are made, we see
that each conversational context has a different network structure and different user communities.

Current methods only have access to the mixed-context view of interactions where none of
the contextualized communities can be observed. Thus, non-contextualized analysis leads to an
obscured view of communities. Further, any detected communities are more difficult to analyze,
since the full context of their interactions is not understood. Thus, the first part of this thesis
is concerned with developing methods for performing this network separation based on context.
From there, methods are developed to better understand the resulting inter-related contextualized
networks.

Figure 1: Cartoon illustration of how contextual mixing can hide community structure. Networks
represent users connected through conversation. Nodes are colored by their network community.
The “mixed” network includes links from all three contexts. This lack of contextualization hides
the community structure seen in the contextualized networks. After contextualization, we under-
stand that Reopen Protests and Reopen Strategy have similar structure, while the BLM conver-
sation is very different.
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While Figure 1 illustrates “context” in terms of the information that is being exchanged be-
tween pairs of users, there is another important aspect of context that is also often overlooked:
personal attributes. Personal attributes play a key role in sociological theories of offline inter-
action, and there has been limited work in testing these theories within social media. The same
edge between two people may take on different meanings if the two users describe themselves to
be very similar or very different on key issues. Zooming out, communities can undergo change
without changing their individual edges when the members collectively change their self-image.
For example, a group of political actors may keep their alliances the same while collectively
moving in ideology.

In this thesis, I develop a series of tools and analyses to contextualize the interactions that
we observe in large social media datasets, and thereby better understand online community dy-
namics. This begins with methods for extracting the edge-based contexts in order to perform the
network separation observed in Figure 1. From there, methods for analyzing the social dynamics
within and between these contexts are developed. Following this, a method for studying the rela-
tionship between self-descriptions and online social communities is given, shedding light on the
applicability of offline sociological theories to the online domain. Lastly, a pipeline combining
both edge-based and description-based contextualization is presented.

Literature Review

Social Cybersecurity

Perhaps the most pressing area of research relying on a solid understanding of online communi-
ties is the area of social cybersecurity, which is defined in [19] as follows:

Social Cyber-security is an emerging scientific area focused on the science to charac-
terize, understand, and forecast cyber-mediated changes in human behavior, social,
cultural and political outcomes, and to build the cyber-infrastructure needed for soci-
ety to persist in its essential character in a cyber-mediated information environment
under changing conditions, actual or imminent social cyber-threats.

Thus, this area of work encompasses a number of important challenges in the information envi-
ronment including the spread of disinformation and the measurement of polarization [18]. Early
work on the science of “fake news,” for example, calls for further work to understand its spread
and how it is received [33, 51]. At the individual level, network centrality measures are often used
to determine important actors in a conversation. However, these centrality measures have been
found to be sensitive to the quality of the observed network compared to the underlying network;
thus, a de-contextualized network adds “noise” edges to the point which centrality analysis may
be unreliable [14]. These problems are typically studied at the community-level, and as such,
community-detection is often including in information operation analysis pipelines [86].

Analysis of polarization, too, often relies on analysis of interaction networks and could
thereby benefit from a contextualized approach. Specifically, distinct communities within retweet
networks are often used as evidence of polarization [22, 30, 81]. However, these analyses do not
contextualize the observed retweets. Without this contextualization, it is difficult to distinguish
if communities are polarized because they are supporting opposing ideas, or they are simply
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involved in different discussions.

A final example is the problem of stance-detection, where social media data is used to label
users’ position on a topic, e.g., pro or anti-gun control. Note that stance detection is closely
related to the study of polarized communities, however it is methodologically distinct in that it
uses content-based approaches to label users before performing network analysis [50]. Stance
detection methods such as that in [50], assume that all observed data is on-topic enough to lever-
age, however early results of the contextualization process developed in this thesis suggests that
this is not the case. The contextual mixing that occurs in social media datasets could be harming
results of these analyses, and thereby could be improved by this work.

Community Detection and Clustering

Community detection is the problem of dividing a network into sub-networks, or “communities”
where nodes are more closely related to other nodes within the community than they are to nodes
in other communities [93]. Community detection is a core problem in the study of network anal-
ysis, and as such many methods have been developed in the space with the dominant approaching
being modularity maximization [10, 64, 83].

Two sub-areas of community detection are of particular relevance to this thesis. First, is the
application of community detection to spatial networks, or those where nodes are fixed at a loca-
tion in space [27, 66]. Spatial networks are relevant but distinct from contextualized networks.
While spatial networks have nodes embedded in space, contextualized networks can be modeled
to have edges embedded in space, where their spatial position indicates the context occurring
in that interaction. Thus, the methods from spatial networks will not be directly applicable, but
may be worth considering in the development of new contextualized methods. When it comes
to edges embedded in a vector space, classic clustering techniques such as DBSCAN and its
variants are applicable [26, 29, 58, 59, 77]

More directly related is the area of multi-view, multi-layer, or multi-slice networks, which
expands upon traditional networks with the addition of distinct edge types [1, 61]. A contex-
tualized conversation could be modeled as a multi-view network where users are nodes and
edge types represent interactions within different contexts. For example, two users might have
one edge indicating their conversation about sports, and another edge indicating their conversa-
tion about politics. A series of specialized techniques for clustering multi-view networks have
been developed that give a single definition of communities that combines information from all
views [23, 47, 62]. This is a useful approach to incorporating contextual information to improve
the quality of detected communities. This is particularly important due to work that indicates
that multi-layer cluster structure drives the diffusion of information over a multi-layer network
[95, 97]. In our case, this could mean that decomposing social media conversations into a multi-
layer network could uncover diffusion patterns that were obscured through contextual mixing.
However, multi-view clustering’s output of a single definition of communities will not allow for
the comparison of contextualized communities or the analysis of communities shifts between
contexts, as is the focus of this thesis.
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Dynamics of Network Communities

Understanding the dynamics of network communities is another core area of work in Network
Science, however the prevailing models are difficult to apply to social media data. A popular
approach to modeling network dynamics is to use network snapshots, which model the dynamic
network as a sequence of static networks, usually constructed from the edges occurring within
fixed time windows [70, 71, 82]. Snapshot-based approaches have also been developed on tem-
poral networks [43, 44, 57]. These approaches then compare the snapshots, either at the network
level or based on community structure. Such comparison is not possible in social media datasets,
where there may be little overlap in the users present in different snapshots, and where adjacent
snapshots may have networks that differ in size by orders of magnitude. While snapshot-based
approaches have some, but not enough, tolerance for the transience of nodes seen on social
media, statistical methods are even more restrictive. Many statistical approaches, such as the
stochastic actor-oriented model assume near perfect knowledge of node connections, measured
at regular intervals, which is far from the data seen on social media [65, 78, 79].

Trails are another approach to understanding network community dynamics that is relevant
for this thesis [7, 16]. Trails can be used to model nodes’ transitions between semantic states
while accounting for the time between these states. For example, in [16], trails modeled how
terrorist organizations transitioned between different types of attacks. In this thesis, trails will be
used to understand how users transition between contexts.

Story and Topic Detection

For the problem of content-based contextualization, the areas of topic detection and story detec-
tion are very relevant as they both make use of social media text to better understand the context
of a post. These methods are slightly different than the notion of context that I will use in this
thesis, as will be explained. Also, there is little work that goes beyond the detection and analysis
of a topic or a story to understand how they relate to community dynamics.

Topic detection seeks to uncover patterns, or “topics” in a collection of text documents [9].
These topics are typically characterized by their most prominent and frequent words. There are
many topic detection models that have been developed, including a number of methods that have
been designed specifically for social media by leveraging the brief nature of social media posts
and the presence of hashtags [4, 21, 28, 45, 54, 90, 92, 98].

While topics can be distilled to a series of words stories often have a notion of a topic tied
to a specific event. Story detection methods build on topic-based approaches to find temporally
prominent topics corresponding to events that occur during data collection [2, 3, 25, 67, 80].
Again, these models predominantly leverage social media text, but also use temporal patterns.

For this thesis, a method of accounting for context will be developed similar to the techniques
used in topic and story detection. However, the method will expand on the usage of text by
including both hashtags and URLs, as well as the conversational structure directly.
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Machine Learning on Networks

Recent developments in machine learning will enable the content-based contextualization method
proposed in this thesis. The machine learning community has seen increasing interest in deep
learning methods applicable to graphs. These approaches work by converting network-based
data into vector-based data. Some approaches use random walks to generate sequences of nodes
which can then be fed to a skip-gram architecture to embed nodes in a vector space based on
network structure alone [34, 72] More commonly, node attributes (in vector form) are required.
Nodes can then aggregate information from their local neighborhoods to obtain their vector em-
bedding [17, 20, 63, 91]. This has led to a large area of research into what type of aggregation
scheme nodes should adopt in different scenarios [15, 36, 49, 87].

A graph-based framework can be used to model Twitter posts, as each post may be connected
to other posts (replies or quotes), hashtags, and URLs. Thus, a twitter dataset can be seen as a
heterogeneous network connecting tweets, hashtags, and URLs. Representing this network in
a vector space enables contextualization of interactions observed in Tweets. The majority of
information in a tweet is encoded in the tweet’s text, which could be represented by a vectorized
node-feature using a variety of different natural language techniques [11, 24, 48, 60].

Until recently, feature-based methods required supervision or some labeled training data to
work with. However, deep graph infomax has been developed as a framework for learning
feature-based representations of graphs in an unsupervised manner using mutual information
[88]. Further, this has been expanded to heterogeneous networks [75, 88]. These methods will
be at the core of the contextualization model proposed in Chapter 2.

Networks and Identity

For the other type of context considered in this thesis, personal descriptions, there is a wide
area of prior work. Sociology has long been concerned with how internal processes play out at
the community level. The specific theories most relevant to the connection between individual
attributes and community dynamics are social identity theory and self-categorization theory [8,
37, 39, 40, 41, 42, 46, 69, 84, 85]. These theories posit that the concept of self is defined in terms
of attributes and these attributes are selected with respect to the community that an individual is or
wants to be a member of. Self-categorization theory outlines the idea of a “community prototype”
or a collection of attributes that would belong to a prototypical member of that community.

Social theory states that members are aware of these prototypes and are aware of how their
attributes compare to it. The theory posits that these relationships are key factors in tie formation
and group dynamics. Specifically, people with prototypical attributes have higher potential for
leadership roles. Conversely, community members who are poorly aligned with the group proto-
type will seek to conform to the group to improve their status. The theory of prototype adoption
is quite similar to models of correlated information spread, where abstract bits of information
are spreading along a network, but the adoption of these bits of information can be correlated
[96]. This is similar to prototype adoption in that a number of attributes are potentially being
adopted across a network, pairs of attributes within a prototype are positively correlated, while
those between prototypes are negatively correlated.

It has been found that Twitter users do signal their social identity in their biography [69]. Fur-
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ther, there is evidence that user self-description alignment is associated with content propagation
on Tumblr [94]. These studies provide evidence that community prototypes may exist on large
social media platforms like Twitter, but they offer no method for directly testing this hypothesis,
as I outline in Chapter 4. Beyond testing the presence of community prototypes, further tenets of
the social theory can then be tested and connections between personal attributes and contextual
dynamics can be explored.

Community-Aware Centrality
An emerging area of research of relevance to the study of networks and identity is that of
community-aware centrality [55, 73]. Traditional centrality measures, such as Pagerank, are
concerned with quantifying the importance of nodes in a network [12, 68, 93]. These measures
are a function of network structure only. However, it is well understood that community struc-
ture is an important feature of real-world networks. Thus, community-aware centrality quantifies
each node’s importance with respect to the given definition of the network’s community structure
[31, 32, 35, 73].

This field within Network Science is relevant to the thesis as it can allow for the measurement
of how important attributes are relative to communities of users. Existing community-aware cen-
trality measures, however, do not allow for the measurement of contribution (a signed quantity),
and do not allow for the measurement of importance with respect to a specific community, instead
giving a single score for the full network. Thus, Chapter 4 in part develops modularity vitality
to solve these issues, building on the concepts of network vitalities and the key-player problem
[12, 13]. Modularity vitality has since been published and has been verified as an important
quantity by outside researchers [55, 74].

Data
This thesis makes use of 5 core datasets throughout its chapters. These each offer unique fea-
tures meant to best test the methods being developed. Further, the use of multiple datasets results
in multiple case studies of the community dynamics under investigation, providing a more ro-
bust understanding of the phenomena being examined. Each dataset and its purpose are now
explained.

Reopen America
The “Reopen America” Twitter dataset was collected from April 1 to June 22 in 2020 to un-
derstand the discussion of the reopen America protests [6]. The dataset was collected using a
keyword search using terms such as “reopen” and “openup,” including each US state’s abbre-
viation appended to the terms, e.g., “reopenNY.” One year after collection, the reply trees were
crawled to get a better view of the full conversation. The resulting dataset has 10 million unique
tweets across 3.3 million users. At the time of the collection, the Black Lives Matter movement
became a major point of discussion and resulted in significant context mixing. The context mix-
ing occurring in this dataset makes is a prime candidate for analysis, both to test the developed
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method’s ability to distinguish context and to demonstrate its importance. Thus, this dataset is
used in all analysis chapters of the thesis, Chapters 2-5.

2020 US Elections

The “2020 US Election” Twitter dataset captures online discussion of the most contentious elec-
tions in recent US history. False claims of voter fraud and a stolen election were rife on Twitter
and are present in this dataset. These claims have since been named “The Big Lie” and have had
a lasting impact on American politics 1. The dataset was captured using a keyword-based stream
of Twitter’s API from November 2 2020 to November 8 2020. This allowed for the capture of
data one day before election night, which was November 3 2020, and one day after major news
outlets declared Joe Biden the winner on November 7 2020. The keywords were selected in
order to maximize conversation around the election. This includes general hashtags, campaign
hashtags, and mentions of prominent figures in the election such as Trump, Pence, Biden, and
Harris. It also includes hashtags relating to anticipated election-related issues, such as the Black
Lives Matter movement, US Sanctions on Iran, issues with voting-by-mail, and claims of voter
fraud. The collection resulted in 4.5M tweets. Unlike the reopen dataset, there is no competing
discussion present. Thus, the election dataset presents the “normal” scenario where keywords
search alone provides moderately successful contextualization. Also, this dataset spans a much
shorter time period than the Reopen dataset, which can give examples of dynamics occurring on
different time scales. Because this dataset offers contrast to the Reopen America dataset, it is
also used in all analysis chapters of the thesis, Chapters 2-5.

Ukraine Legislature

The Ukrainian Legislature dataset is the record of all Ukrainian legislative votes cast in the
22-month span of the 7th convocation of the Rada. The Ukrainian revolution of 2014 occurs
midway through the convocation, drastically changing the political allegiances observed. While
this network is extremely different than the data seen on social media, it provides an example
of a large, ground-truth change in communities to detect. As such, it is used to validate the
community dynamics method developed in Chapter 3.

Coronavirus

The Coronavirus Twitter dataset is the largest dataset examined in this Thesis. It was collected
using a keyword-based stream of the Coronavirus discussion resulting in 77 million tweets. The
Twitter API does not allow for retroactive collection of a user’s profile information. Instead, a
user’s profile information can only be obtained by direct query or by observation when a user’s
tweet enters a collection. This makes tracking the evolution of a collection of a group of users’
attributes over time difficult. It is also effectively impossible to track the evolution of attributes
over an unexpected event.

1https://www.npr.org/2022/01/05/1070362852/trump-big-lie-election-jan-6-families
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The long-standing collection of the Coronavirus discussion, however, resulted in a longitu-
dinal picture of users’ profiles who were active in the discussion of the virus. The coronavirus
discussion was general enough to include users across many different interests. Further, the
dataset spans the murder of George Floyd and the subsequent rise of the Black Lives Matter
Movement. Thus, this dataset is uniquely positioned to study the dynamics of user attributes at
the community level, and to specifically study the adoption or lack of adoption of attributes in
support of Black Lives Matter, a highly polarizing issue. This will be studied in Chapter 4.

Specialized News Discussion
As part of the analysis pipeline detailed in Chapter 5, a series of best practices in data collection
will be provided. The first goal is to provide a set of procedures that researchers can follow
to yield the best results from the tools outlined in the previous chapters. The second goal of
this dataset is to directly demonstrate the robustness of the methods as well. The collection will
maximize the conversational connections between Twitter users through the new Conversation
Collection feature of Twitter’s V2 API 2. This feature enables the collection of full reply trees,
which were previously unobtainable. With more of the conversational structure available, it
is expected that this specialized dataset will be contextualized in a clearer way than the other
datasets, providing a useful case study to demonstrate the full contextualized analysis pipeline.

Initially, all tweets containing news links from 6 news agencies will be collected within a
short time period, likely one day. The six agencies have been chosen to represent different types
of popular news agencies, which may drive different types of conversations, thereby acting as a
robustness test for the analyses. The news agencies are as follows: two direct reporting agencies
(Reuters and Associated Press), one American left-leaning (CNN), one American right-leaning
(Fox), and two state-sponsored agencies (CGTV and RT). The conversation collection will then
be used to obtain the full threads surrounding news-related posts on that day. This will result
in large number of conversations talking about different topics from different points of view.
This dataset will be collected and used in Chapter 5 which will cover application of all the tools
developed in preceding chapters.

2https://blog.twitter.com/developer/en_us/topics/tools/2020/introducing_
new_twitter_api
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Research Plan

Chapter 2: Contextual Dynamics of Social Media Discussions

Guiding Questions

A central premise of this thesis is that online interactions occur within an observable context.
All of the information surrounding an interaction serve to provide this context. For example, an
interaction between two Twitter users can occur when one user mentions another in a tweet. This
tweet may contain text, hashtags, and URLs which provide information about the context that
user interaction is occurring within. Further, the tweet may be responding (replying or quoting)
to another tweet which in turn has even more contextual information. Network analysis can tell
us information about a conversation’s structure and key participants, however understanding of
the content and context of these conversational interactions is critical. This leads us to the first
guiding question of this chapter:

• RQ2.1: How can conversational context be operationalized?
I assume that answers to this question will enable the separation of tweets into different groups
for analysis.

As previously discussed, the conversational network obtained using an entire dataset is actu-
ally a summation of many contextualized networks. This summation is likely to be altering the
results of conversational network analysis. The results from RQ2.1 enable these differences to
be studied:

• RQ2.2: How do contextualized network characteristics differ from the larger conver-
sational network?

Here, “network characteristics” include nodeset overlap, central members, and community struc-
ture. Major differences in any of these areas will be a significant finding highlighting the need
for contextualized analysis.

Once contextualization is possible and its effects are understood, I turn to analyzing the
dynamics of the conversational contexts themselves:

• RQ2.3: How do users transition between conversational contexts and what does that
tell us about the conversation as a whole?

The answers to these questions will prove the importance of contextualized network analysis
both for improving the existing workflows and for answering new questions, such as how the
conversations in a dataset develop over time.
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Proposed Approach
To operationalize conversational context, two approaches are proposed a simple label propa-
gation approach and a more sophisticated deep learning approach. The first approach yields
interpretable contexts which serves to validate the deep learning approach. From there, network
analysis including community detection and discovery of central members (through measures
such as PageRank and degree), will be performed both on contextualized networks and on the
full conversational networks. The comparison of results will give the answer to research ques-
tion RQ2.2. Finally, the flow of users between conversational contexts will be modeled through
a Markov transition matrix. This matrix gives the probability that a user, who is active in one
conversation, will transition to another. Properties of this matrix will be leveraged to infer the
relationships between contexts. For example, the presence of a “sink” in the transition matrix
indicates an important conversational context which draws in users from many other contexts.

The Semi-Automated Approach: Label Propagation

This simple method makes the assumption that conversational contexts will be well-captured
through popular URLs. That is, posts which provide commentary on a URL are considered to
be part of the same conversation as the URL itself. It further assumes that tweets replying to a
conversation are also a part of that same conversation. Conversational drift poses a threat to this
assumption; two users who repeatedly reply to one another may slowly get off the topic at hand
and drift into an unrelated conversation. In the Reopen America dataset, the average component
in the tweet-tweet network was 11.6 tweets, with 90% of tweets within 2-tweets of the initial
tweet. This gives very little room for conversational drift to occur in the data.

This simple model takes hand-annotated URLs as input. These URLs are annotated to corre-
spond to the same conversation. For example, a URL pointing to the New York Time’s COVID
tracker is part of the same conversation as CNN’s COVID tracker, so both URLs will receive the
same label, perhaps “COVID updates.” Top tweets (those with the most favorites and retweets),
can also be useful sources of conversational contexts as they may include first-hand information
(text, images, video, etc.). As such, these can also be included in the seed labeling stage. From
there, label propagation is performed. In the first round, only tweets which directly use a URL
are labeled. For example, all tweet containing CNN’s covid tracker will be labeled as a part of
“COVID updates.” In the following rounds, the replies and quotes will be iteratively labeled.
Tweets which are connected to tweets of two different conversations will not be labeled.

The Markov transition matrix for the conversational contexts discovered in the Reopen Amer-
ica dataset using this method is shown in Figure 2. These transitions can be used to understand
the overall flow of the conversation. The presence of three sinks: “Trump’s Job Reopening,”
“Reopen Strategy,” and “Black Lives Matter,” indicate status differences between conversational
contexts which will be further analyzed in this chapter.

The Fully Automated Approach: Deep Tweet Infomax

This simple model is fast and leads to human-understandable contexts, but is incapable of reach-
ing all tweets in a dataset, does not leverage much of the information available (text, hashtags,
etc.), and requires human-annotation of data which is very time consuming. Alternatively, I
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Figure 2: Markov transition matrix between conversational contexts in the Reopen America
dataset. Transition probabilities below 0.2 have been trimmed for readability.

propose a second approach which leverages more information and does not require any hand-
labeling. The downside of the completely automated approach is that it is up to the analyst to
make sense of the contexts after they are discovered.

This second model is a deep graph learning model, which takes into account tweet text,
hashtags, URLs, and conversational structure. The flow of information in 1 step of the graph
neural network architecture can be seen in Figure 3. A tweet aggregates information from tweets
that it is connected to (replies, or quotes in either direction), hashtags, and URLS. Hashtags and
URLs, obtain information by aggregating from the tweets that they are used in. This approach
allows for all tweets using the same hashtags and URLs to pass information to one another in
a memory-efficient manner, while obtaining hashtag and URL representations simultaneously.
This model is trained using Deep Graph Infomax, leading to the informal name of the approach
of Deep Tweet Infomax (DTI). The architecture will now be described in detail.

Figure 3: Visualization of how tweets gather information in the proposed model. Tweets gather
information from other tweets they reference (replies, or quotes), hashtags they use, and URLs
they use. Hashtags and URLS gain their representation from the tweets that use them.
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Let t, u, and h represent nodes of the type tweet, URL, and hashtag, respectively. They will
be indexed using subscripts, e.g., ti corresponds to the ith tweet. Feature vectors are represented
with the letter x, using subscripts to indicate the corresponding node and superscripts to indicate
the layer. For example, x0

ti
, represents the 0th-layer vector (otherwise known as the feature vector)

for the ith tweet. I will make use of a neighborhood function N , which takes in a node and returns
the set of its neighbors. Subscripts of the neighborhood function allow for the return of only a
specific type of neighbor. For example, Nu(ti) returns all of the URLs connected to the ith tweet.

First, tweet-features are derived from the tweet’s text. To enable multi-language analysis,
the pre-trained3 and language-aligned vectors trained using fastText on the Wikipedia corpus
were used [11, 48]. The use of language-aligned vectors allows us to place similar tweets in the
same discussion, even if they are tweeting in different languages. For each tweet, a normalized
tf-idf weighting of the fastText word vectors was used to obtain a 300-dimensional tweet-text
embedding. This procedure to embed tweets in Arabic, English, French, German, Hebrew, Ital-
ian, Portuguese, Romanian, Russian, Spanish, and Turkish, covering over 95% of the reachable
tweets. Finally, feature propagation is deployed to obtain a feature vector for the remaining
tweets [76].

Hashtags and URLs themselves do not have an initial feature representation. Instead, they
aggregate the feature representation from all of the tweets that they are used in. As tweet-
representation improves, so too does hashtag and URL representation. Thus, the first step of
the representation process is for hashtags and URLs to aggregate information from the tweets
that they appear in, as seen in Equations 1 and 2, where AGG a learnable aggregation function,
and σ is an activation function.

x0
hi
= σ(AGG({x0

ti
,∀ti ∈ Nt(hi)})) (1)

x0
ui
= σ(AGG({x0

ti
,∀ti ∈ Nt(ui)})) (2)

Now that all nodes have feature vectors, tweets aggregate from their heterogeneous neigh-
borhoods. Separate aggregation functions are learned for the tweets, hashtags, and URLs that a
tweet is connected to, which are then averaged, and an activation function is applied, as seen in
Equation 3.

x1
ti
= σ(

1

3
(AGG({x0

hi
,∀hi ∈ Nh(ti)})

+ AGG({x0
ui
,∀ui ∈ Nu(ti)})

+ AGG({x0
ti
,∀ti ∈ Nt(ti) ∪ {ti}})))

(3)

The process thus far defines the network over which features are passed, and the order in
which to pass them. The selection of the aggregation function, AGG, is the main topic of debate
within graph neural network research. In future work, AGG, can be expected to be substituted for
the new state-of-the-art aggregation schemes. For now, I employ the GraphSAGE aggregation,
which is the initial aggregation scheme applied in the Deep Graph Infomax work [36]. This

3https://fasttext.cc/docs/en/aligned-vectors.html
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aggregation scheme is detailed for the tweet-to-tweet relationship in Equation 4, where W are
trainable weight matrices, and b is a trainable bias vector. Note that the first term is only present
when a feature vector from the previous layer is available. So for the initial aggregation steps
of hashtags and URLs, this term is not present. Finally, a nonlinear activation function must be
selected. Again following the original Deep Graph Infomax work, the PReLU activation function
is selected [38].

x′
ti
= W1x

0
ti
+

1

|N (ti)|
∑

tj∈N (ti)

W2x
0
tj
+ b (4)

The process up to here details a single-layer of the architecture. Tweets will only obtain
information from 1-hop away, and hashtags and URLs will only receive information from the
initial feature vectors. Stacking these layers enables further information spread, and thus better
representations of tweets, URLs, and hashtags. Here, three layers are stacked. However, in our
case, tweet networks themselves are shallow. The vast majority of Twitter replies are replies
to a base-tweet, rather than replies to replies. The choice of encoding tweet relationships with
undirected edges also informs this depth. Incorporating tweets within 2-hops in either direction,
is quite a lot of context to consider.

The architecture is trained using Deep Graph Infomax (DGI), an approach for learning unsu-
pervised node representations by maximizing mutual information between patch representations
and corresponding high-level summaries of graphs [88]. The DGI training process involves four
steps. First, a normal forward pass on the data is performed, giving tweet representations, xt.
Next, a readout function is applied to give a graph-level summary vector, s. Here, the Set2Vec
operation was used: s = σ(Set2Vec({xti∀ti})), where σ is the sigmoid function [89]. Third,
a forward pass is performed on corrupted data, giving corrupted tweet representations, x̃t. The
same corruption function as the original work is used where tweet features are shuffled while
edges are kept intact. Finally, a scoring function is applied to classify the tweets as corrupted or
not. Equation 5 details the scoring function, where W is a trainable scoring matrix and σ is the
sigmoid function, providing a score between 0 and 1. Binary cross entropy loss was used on the
score, d, and the label (corrupted or not) to train the model.

dti = σ(xT
ti
Ws) (5)

The application of this model leads to a vectorized representation of tweets, hashtags, and
URLs. From there, contexts can automatically be extracted through clustering techniques such
as DBSCAN and its variants [29, 59].

Challenges
First, a number of variations on the proposed DTI architecture are being studied. Without direct
testing, it is impossible to know whether certain parts of the architecture will lead to more inter-
pretable results than others. For example, whether or not the network should be directed, how
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deep the model should be, and the optimal embedding size all still need to be determined through
testing.

The interpretability gap between the automatically extracted contexts of DTI and the hand-
labeled contexts of label propagation poses the most important challenge to overcome in this
chapter. While analysis of top tweets, hashtags, and URLs will characterize the context, it is
unclear whether or not these will give insight to the distinguishing factors. If not, specialized
methods will need to be developed. One potential method is to analyze the tweets, hashtags, and
URLs that are the most “central” to the content within the vector space.

Next, the implications of a transition between contexts is not well understood. There may be
an event which drives users to shift from one context to another. Alternatively, conversations may
come to a natural end, and users look to find something else to discuss. Through the case-studies
performed in this chapter, these different types of transitions can be better understood.

Chapter 3: Structural Changes in Contextualized Communi-
cation Networks

Guiding Questions

While the previous chapter uncovered and analyzed contextualized communication networks,
this chapter seeks to understand their implications for user communication communities. There
are two guiding research questions regarding these dynamics:

• RQ3.1 What are the characteristics of communication dynamics within a single con-
text?

• RQ3.2 Do communities of users transition between conversational contexts at similar
times?

These questions will be studied separately in the two parts of this chapter. Taken together, the re-
sults will lead to a better understanding of the dynamics of user communities within and between
conversational contexts.

Proposed Approach

Node persistence, or lack thereof, is a major roadblock for applying dynamic network approaches
to social media data. Many dynamic network approaches require all nodes to be present at each
time step [65, 70, 71, 78, 79, 82]. On social media, however, there are often large swings in the
number of users active within a social network. Before a major event can lead to tens of thousands
if not hundreds of thousands of users entering or leaving a discussion. I propose to tackle this
issue in two parts. First, only dynamics within contextualized conversations are considered,
which should have less of a node persistence issue. In the second part, a network trail approach
is taken to understand the dynamics of users between contexts, as trail-based methods do not
have the same node persistence requirements [7, 16].
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Intra-Context Dynamics: Network Snapshots

Within contexts, a snapshot-based approach is taken. Snapshot-based approaches model a dy-
namic network a series of static networks, generated from all the edges occurring within fixed
time windows. When analyzing community dynamics, snapshot-based methods first compare
the community structure of different snapshots, and then merge time periods which are similar.
Existing measures tend to compare the networks directly by computing distance measures on
the adjacency matrix [57]. Such approaches do not account for nuances in community structure.
For example, if it is known that a dataset is best clustered using a specific community detection
algorithm, there is no way to integrate that knowledge in these approaches. Further, multi-view
or multi-modal data is not easily integrated.

Instead, I measure similarity on the co-group matrix. This matrix has a value of 1 for all pairs
of nodes that are in the same group, and a value of 0 for all pairs of nodes in different groups.
Now, snapshot similarity corresponds directly to community similarity, rather than other details
of the network’s topology. After pairwise similarity is computed on the co-group snapshots, it
is partitioned using a 2-step optimization procedure. This procedure first maximizes the internal
similarity of a block (that is, a time period should have as little community change as possible),
and then minimizes the external similarity between blocks (that is, a new time period should
begin when there is the most change in community structure. This procedure has been fully
outlined and applied to the Ukrainian Legislature Network in a publication in Applied Network
Science [52]. Figure 4 shows the co-group similarity matrix and the derived partition for the
Ukrainian Legislature Network. The detected break-point occurs during the Ukrainian revolu-
tion, giving validity to the approach. Prior to the revolution, communities were seen to be stable
and polarized, while afterwards they are only moderately stable and dispersed.

Figure 4: Visualization of the temporal group similarity matrix can be partitioned to find periods
of community stability.

This approach will be used to study the internal dynamics of contextualized networks. This
will result in a number of case studies, detailing how communities evolve within a conversational
context.
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Inter-Context Dynamics: Context Trails

For the analysis of inter-context dynamics, I propose to use network trails [7]. Network trails
model transitions between networked states. Expanding on the Markov analysis proposed in
Chapter 2, trail analysis includes details about when transitions occur. This addition enables trail
clustering, which clusters users based on the similarity of their trails. Here, similarity includes
both the similarity of the states and the similarity of when they transitioned between these states. I
propose to employ these methods on contextualized networks to discover dynamic topic groups.
This analysis will give clusters of users who are engaged in similar conversations at similar
times. Depending on the strictness of time-similarity, this could be a useful form of detection of
coordinated actors [56]. A method will be developed for returning the “average” trail of a cluster
member, leading to a quick interpretation of a cluster. By applying this technique to a number of
datasets, the behavior of dynamic topic groups will be better understood.

Challenges
There are three main challenges to be overcome in this chapter. First, the snapshot-based ap-
proach relies on node persistence, and it is unknown how persistent nodes are in contextualized
networks. If users are found to be insufficiently persistent even in the contextualized setting, this
will itself be an important contribution. In this case, structure of the networks will be studied not
at the community level but instead at the metric level by investigating node and network level
properties over time.

Second, it is unclear how to best model contextualized trails. Discretizing contexts through
clustering enables direct application of trail techniques: each context can be considered a “state”.
However, a shortcoming of standard trail analysis is its inability to account for similarity between
discrete states. For example, “classroom 1,” “classroom 2,” and “airplane” are all equally dis-
tinct under a standard trail model, despite the two classrooms being much more similar than the
airplane. The vectorized contexts obtained in Chapter 2 pose an opportunity to rectify this short-
coming, but also pose a challenge. The vectorized representation can quantify the fact that the
classrooms are very similar to each other, however specialized techniques must be developed to
actually incorporate this knowledge into the trail paradigm.

Lastly, there currently is no method of extracting an “average” trail from a trail cluster. For
this to be created, a definition of “average” must be developed which spans both the states visited
and the patterns of transitions between them.

Chapter 4: Dynamics of Online Community Prototypes

Guiding Questions
This chapter turns to a different type of context can be leveraged to better understand online
communities: individual attributes. Twitter offers a number of ways for users to signal their
personality, with the most obvious being the “bio” field, a free-text field for users to describe
themselves in. But there are other available fields including an area to post a URL and a location.
Theories of social identity posit that individual attributes are closely related to group dynamics.
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Specifically, self-categorization theory posits the presence of a “community prototype” which is
a collection of attributes that are likely to be signaled from a prototypical member. The theory
states that individuals will conform to the community’s prototype to gain status, and those not
conforming will thereby have lower status in the group. This theory has been proposed and tested
for small, offline groups, but has yet to be tested on large online communities. This leads to the
first major questions guiding the chapter:

• RQ4.1: Do large online communities exhibit prototypes?
• RQ4.2: If so, do offline findings from self-categorization and social identity theory

apply to large online communities? Specifically, is prototype adoption associated with
increased status?

If the answers to these questions are yes, an important bridge will have been formed between
offline and online theories of groups. If the answers are no, this opens an opportunity to study
why the offline theories do not hold, and to consider what should replace them.

Proposed Approach
A community prototype can be defined more formally as the collection of attributes which con-
tribute maximally to a user community’s structure. I propose to use a multi-view projected
modularity vitality to quantify this procedure. First, I developed modularity vitality to measure
node contribution to community structure in the unimodal setting [55]. Modularity allows us to
quantify the quality of group structure in a network, and network vitalities allow us to measure
an individual node’s contribution towards a network-level quantity. Taken together, modularity
vitality quantifies each node’s contribution to community structure. Those with negative contri-
butions are community bridges, while those with positive contributions are community hubs. In
our work and in external work, modularity vitality has been found to identify important nodes in
a number of networks [73].

The formula for the modularity vitality of a node i within a network G and partition C is
given in Equation 6, where G \ {i} indicates the network G after the deletion of node i and Q
is the modularity function. In the modularity equation (Equation 7), A represents the adjacency
matrix, ki represents the degree of node i and ci represents the community label of node i.

VQ(G,C, i) = Q(G,C)−Q(G \ {i}, C \ {i}) (6)

Q(G,C) =
1

2M

∑
i,j

(
Ai,j −

kikj
2M

)
δ(ci, cj) (7)

This relates to attributes if a user-to-attribute bipartite network is considered. While the mod-
ularity equation used in 7 holds for unipartite networks, we can substitute Arthur’s modularity
for bipartite projections, i.e. the user-to-user shared attribute network [5]. Now, the contribution
of an attribute to a community of users can be quantified. Note that user communities can be
defined in a method separate from the bipartite attribute network.

I propose to first find communities in the user communication network, and then study the
contribution of their attributes to those communities. The bipartite projection modularity can be
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used to measure the association of attributes with user interactions. Thus, we can directly answer
research question R4.1 by observing the modularity values, with high values indicating evidence
for prototype’s existence in online communities.

I propose to extend this framework beyond a single attribute type by taking a multi-view
network approach. In this network, each view corresponds to a different attribute type. Attribute
types that will be examined include: hashtags in a user’s biography, mentions in a user’s biogra-
phy, unigrams in a user’s location, and hashtags that a user tweets. Within each view, the analysis
will be performed as previously described. Expanding to a multi-view modularity vitality, the
overall presence of prototypes can be quantified, as well as the presence of prototypical behavior
within each view [23].

Beyond quantifying the presence of prototypes, the prototypes themselves will be constructed
by ordering the attributes which maximally contribute to a community’s structure. The multi-
view framework allows for attributes to be compared across attribute type. The result is an
ordered collection of attributes that a prototypical member of a community might display. In
Figure 5, a prototype of a user community in the Reopen America dataset is displayed, attribute
type is recorded with a prefix and is displayed with a unique color. The resulting prototype is
easily interpretable; a typical member of this community will have things like “#theresistance”,
“#VoteBlue”, “joebiden” in their biograph, list their location somewhere in the USA, and will
retweet people like Joshua Potash and Joe Biden. Based on these facts we can understand this
community to be mainstream Democrats.

Figure 5: Visualization of a community prototype in the Reopen America dataset.

For research question R4.2, I propose to use the steps previously outlined to quantify a user’s
prototypicality within their community. Based on their prototypicality, we can test findings from
self-categorization theory. First, the correlation between prototypicality and status can be com-
pared. I propose to quantify status through network centrality measures such as degree and
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Pagerank. A high correlation between these prototypicality and network centrality would verify
findings from smaller offline studies.

The second phenomena that I propose to examine is that of prototype adaptation. Social
theory states that members will seek to increase their prototypicality in hopes of increasing their
status within the community. This can be studied by breaking a dataset into two time periods.
In the first, communities and prototypes are uncovered, and users with low prototypicality are
identified. The hypothesis is that low-prototypicality users will adopt prototypical attributes by
editing their biographies. I propose to compare the overall shift in prototypicality of these users
and compare results using overall adoption rates.

Challenges

The first challenge to overcome in this chapter is how to best quantify prototypicality when it
comes to the prototypicality vs. centrality study. While each attribute itself already has a score,
a simple sum would reward users who have many attributes in their bio. Typically, it is outside
of the norm to, for example, put 10 hashtags in your bio. So this would lead to a measurement
error. On the other hand, and average score is better, but could result in a biography with only a
single being scored as very prototypical, when in fact there isn’t much information to make that
distinction from. A comparison of a few different measurements will be performed to overcome
this.

The second challenge to overcome in this chapter is within the study of prototype adoption.
I have proposed studying the dynamics in two steps, one to create the prototypes and the second
to see if they are adopted. The problem with this approach is that prototypes themselves are
changing in time, so the success of this method will be dependent on the stability of the observed
prototypes. If, for example, a community is rapidly changing the hashtags that they put in their
biography, there will only be a short time window where that specific prototype is adopted. This
effect may be limited by using a large initial time period and a small second time period, but the
success of this approach remains to be seen.

Chapter 5: Pipeline for Contextualized Conversation Dynamic
Analysis

Guiding Questions

The previous chapters will have furthered our understanding of online community dynamics
through the analysis of the context of online interactions and self-descriptions of the users in-
volved. However, these analyses have been performed separately. The main focus of this chapter
is to combine the approaches previously developed, leading to the main guiding research question
of the chapter:

• RQ5.1 How can the tools from contextualized network analysis and online community
prototypes be integrated into a dynamic community analysis workflow?

20



Contextualized network analysis will benefit from attribute analysis, giving a deeper understand-
ing of the derived communities. At the same time, the limits and applicability of prototype
analysis will be better understood when considering the trail clusters of Chapter 4.

After the pipeline is constructed, the data requirements will become clear, leading to a sec-
ondary research question:

• RQ5.2 What are the best data collection practices when applying the developed pipeline?

Proposed Approach
Trail clusters naturally integrate with community prototype analysis because prototype construc-
tion is agnostic to the method of obtaining user clusters. That is, the contextual trail clustering
approach can be directly substituted in for the previously used community detection approach
on the all-communication network. Because contextualized communities are more precise and
contain different membership than the standard approach, I expect prototypes to be different than
those initially uncovered.

This effect will be examined through a case study, where the entire pipeline is run on a
specialized dataset. This dataset will be constructed according to the requirements of the full
pipeline. Based on the requirement of user attributes, and conversational connections, this dataset
collection procedure will likely collect all available node attributes, and full conversation trees
on Twitter. This will result in far more data than a typical keyword collection, so will require a
smaller scope of investigation either through topic, time, or both.

Challenges
There are two main challenges in this chapter. First, dataset collection requirements limit the
length of time that data can be collected over. Depending on the results from Chapter 4, it may
be that prototype adoption occurs on a time-scale too large to be well-integrated into an ideal
contextualized network analysis. To combat this, a static prototype could be constructed instead.
This analysis is still useful, as it provides details to the internals of dynamic conversational
communities.

The second challenge is how to understand contextualized prototypes if trail clustering is not
used. Each contextualized conversation can easily be broken down into communities, and proto-
types of these communities can be calculated. But how can we compare and contrast community
prototypes from different contexts? and is this a useful thing to do? These questions are difficult
to answer without actually applying the pipeline to a real dataset.
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Contributions and Limitations

Theoretical Contributions

The proposed work makes a number of contributions to the theory of online social community
dynamics. First and foremost, the importance of contextualization and its effects on network
communities will be demonstrated. While a number of methods, such as topic detection and
multi-view clustering imply that multiple conversational contexts are present in social media
datasets, the effect that this has on our understanding of social communities has been previously
unknown.

Naturally, the dynamics of online communities between conversations has also been previ-
ously unknown. Through the application of Markov transitions and trail based analysis, a number
of case studies will give insights into how social media users move between points of discussion.
Further, trail clustering will uncover the presence of “dynamic topic groups,” which, if present,
imply that some communities of users move collectively between points of discussion.

Another major theoretical contribution is the connection between longstanding offline the-
ories of social identity and more recent work into self-presentation online. Through the work
outlined in this proposal, whether or not communities exhibit community prototypes will be un-
derstood. Early results indicate that communities do in fact exhibit this behavior. Following this,
the limits of the applicability of these theories to online behavior will be better understood as the
hypothesis that prototypical members are poised to be community leaders will be tested.

On the Network Science side of theory, modularity vitality has been developed which more
strongly connects the two core research areas of centrality and community structure [53]. Mod-
ularity Vitality has been externally validated as a useful measure of node importance using the
linear threshold model [74].

Computational Contributions

Open-sourced code for the tools developed in this thesis will be made available for further use
and improvement by the research community, including:

• modularity vitality (unipartite, bipartite, projections, multi-view)
• unsupervised tweet representation
• contextualized network dynamics
• online prototype construction
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Academic Contributions
This thesis has and will result in a number of academic contributions. The contextualization
method and analysis seen in Chapter 2 is under revisions for resubmission to the proceedings of
ICWSM 2022. The findings of the basic contextualization method have been presented orally at
the CMU IDeaS Conference 2021.

The core method of dynamic community detection has been published in Applied Network
Science [52]. A follow-on study has validated the method further, which was published in the
proceedings of SBP-BRiMS 2019 [53].

The development, proofs of scalability, and validation of Modularity Vitality was published in
IEEE Transactions of Network Science and Engineering [55]. A follow-on study was performed
which examined the modularity vitality-based method of node filtering in application to hashtag-
based topic detection, which was published in the proceedings of SBP-BRiMS 2020 [54]. A talk
was given at Networks 21 on the development of modularity vitality for bipartite networks and
projections.

The remaining work in this thesis will result in more academic publications and presenta-
tions at academic conferences. The examination of community prototypes in Chapter 4 will be
submitted to Nature Human Behavior after discussion with the editors about their interest in the
work. Talks on contextualized networks and on community prototypes have also been accepted at
Sunbelt 2022. Finally, the work on contextual trail clustering and the full contextualized pipeline
will result in academic papers. For a timeline of the academic contributions, see Figure 7.

Limitations
A natural limitation of this thesis is its scope of applicability on social media. While core con-
cepts and ideas like contextualized networks and contextual trails are applicable to any form of
social media, the current tools are only developed for Twitter. This is for two reasons. First, the
question of unsupervised social media representation is a domain-specific open research ques-
tion. It is a difficult enough question that a significant portion of Chapter 2 is developed to
method development specifically for Twitter. Further, comparison of specialized deep learning
models across platforms are unlikely to lead to meaningful results. The second major reason for
this limitation is the availability of data. Some social media platforms, like Facebook, do not
allow for the collection of specific interactions between users. Other platforms, such as Reddit,
simply do not have the features seen on Twitter, such as the ability to add personal identifiers to
one’s profile. Twitter provides enough data to fully examine contextualization in ways that other
platforms do not.

With that said, each dataset has specific drawbacks, which have been discussed in the data
section. These drawbacks will be minimized through the specialized data collection of Chapter
5. With that said, the ability to directly collect on changes in user attributes is limited by Twitter.

Both contextualization methods developed in Chapter 2 require significant qualitative analy-
sis. The label-propagation approach is more burdensome for reviewers, as it requires an extensive
amount of labeled data (URLs, and tweets). The unsupervised deep learning model eliminates
the need for annotators, however it results in clusters which need to be interpreted. Methods will
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be developed to limit the difficulty of this task.
As with all time-window based approaches, the dynamic community detection method de-

veloped in Chapter 3 requires a selection of time window. This issue can be limited in a number
of ways which will be discussed in detail in the chapter. The simplest approach is to perform
analysis on multiple window sizes to examine dynamics occurring over different time scales.
Other approaches may include using overlapping windows.

Lastly, causal conclusions on the formation of community prototypes cannot be drawn from
the proposed analysis. It is possible that a user’s Twitter feed is ranked such that interactions
with similar-profile users is more likely. This may also result in community prototypes. Without
direct access to this algorithm, which is unavailable, the effect of ranking cannot be determined.
Still, results about the presence of community prototypes will hold. Further, an observation
of higher-than-average adoption for prototypical attributes would bring added confidence to the
presence of sociological effects.
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Progress Report and Timeline

Significant progress on the proposed work has been made. The proposed timeline can be seen in
Figure 6, with an enhanced and annotated timeline given in Figure 6. Within these timelines we
can see that the core methods have been developed for all chapters, including unsupervised net-
work contextualization, snapshot-based community dynamics, and bipartite modularity vitality.
Their completion minimizes the uncertainty of the timeline for remaining work. The remaining
work of developing supplementary methods, such as the trail clustering - based analysis, as well
as the case studies on specific data has been staggered throughout the coming months. Chap-
ter 2 is scheduled to be completed in May. Chapter 3, in June, Chapter 4 in July, and Chapter
5 in October. This gives a reasonable buffer for writing, paper submissions or revisions, and
presentation creation culminating in a thesis defense in December 2022.

Figure 6: Proposed timeline. Green indicates completed tasks. Yellow indicates tasks that are
in-progress. Orange indicates yet to be started.

25



Figure 7: Annotated and extended timeline.
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