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Analytic Models of Roll Call Voting Dynamics

Thomas Magelinski

Abstract—Roll call modeling is an essential component of
analyzing a political system. Current models focus on individual
decision-making, and most of them do not take advantage of
voting dynamics. Some political systems, such as Ukraine’s
Verkhovna Rada, are inherently dynamic and should be modeled
as such. Therefore, a roll call model is developed from a linear
second-order homogeneous differential equation. This model
equation is fit to Verkhovna Rada votes from the seventh and
eighth convocations. The model determines whether or not bills
will reach the passing threshold with 77% and 85% accuracy
for the seventh and eighth convocations, respectively. It is shown
that the dynamic legislative model is slightly less accurate than
a neural network, but it is significantly more interpretable. This
interpretability is vitally important, as it is what makes models
meaningful beyond their predictive power. It is found that bills
sponsored by the president show quantitatively different behavior
than ordinary bills and the ordinary bills are largely decided
in the first two votes. Furthermore, our models have intuitive
theoretical implications, some of which are back by prior work.
The models suggest that MPs are less willing to change their
vote on bills as iterations increase and they are more sensitive
to change the public opinion if the bill is sponsored by the
president. While the majority of bills are modeled well, about
25% of votes have greater than 10% error. Investigation of these
votes indicates that some votes may be impossible to predict
without a more complex model which incorporates contextual
information. Finally, the information from a bill’s first two votes
is also leveraged through a vote switching network. This directed
network gives insight into who sends the most powerful signals
and who follows them. An ensemble of centrality members is
then used to identify the legislator’s most influential members.

Index Terms— Differential modeling, roll call analysis, roll call
dynamics, Verkhovna Rada.

I. INTRODUCTION

OLL call voting has been extensively studied over the

last 50 years to better understand legislative bodies and
the larger political systems they belong to. Roll call data
can be used to determine the level of cooperation within the
government, underlying political factions, and which parlia-
mentarians are most influential. In this paper, we seek to
demonstrate the potential of using a new theoretical framework
for a roll call analysis: viewing the legislative process as
a dynamical system. We use this framework to answer two
simple questions about the legislature: “will the next vote on a
bill be successful?” and “who is influential in the parliament?”
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In most prior work, the focus has been on modeling
individual decision-making. In order to model a legislator’s
thought process, as much contextual information as possible is
needed. Often, the analysis of a large number of bills is needed
to determine political dimensions. Then, information about
each legislator is needed to find their position in the political
dimensions. Finally, the position of a legislator relative to a
bill in this political space is likely to determine their vote.

While this method is intuitive and generalizable, it does
not take into account temporal aspects of roll calls. Some
legislative systems, such as the Ukraine’s Verkhovna Rada, are
inherently dynamic and should be modeled as such. In systems
such as these, bills are voted on several times before passing.
The change between votes, then, provides rich information
about the legislative system and the parliamentarians with the
most influence. Additionally, prior voting information can be
leveraged to predict the final voting outcomes for the bills.

Some recent work has used game-theoretic models to get
at the temporal problem through turn taking. Even with this
improvement, individual decisions are still being modeled,
and therefore, large amounts of contextual information are
still needed. If only the bill outcome is of interest, modeling
individual decisions is overcomplicating the process. Dynamic
modeling allows each bill to be represented by a single
variable, the percentage of votes for, and does not require
contextual information beyond prior voting outcomes.

Here, we develop a dynamic model of the legislative
process. Drawing on theory from state-space identification,
the voting data are used to determine a single model for
the entire legislative body. Every bill’s voting trajectories can
then be derived. While complex high-order models could be
constructed, our goal is to use a workable model that is
also interpretable, so that we may draw conclusions about
the general roll call process. We show that a simple low-
order model is not only interpretable but also powerful in
voting prediction. Additionally, no contextual information is
necessarily needed for prediction or analysis making it an easy
tool to use in the future real-time voting prediction.

While modeling the legislature as a dynamic system,
individual-level information is lost. To recover this, we intro-
duce the vote switching network. Motivated by our results
from the dynamic analysis, this network attempts to capture
individual influence through the iterative roll call process.
We analyze this network to find influential MPs and parties
for both convocations.

In Sections II to IV, we provide the background information
regarding the Verkhovna Rada and our data, walk through the
prior work in roll call analysis and state-space identification,
introduce the dynamic model, and analyze its effectiveness.
Then, we introduce the vote switching network and discuss
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TABLE I
BILL SUMMARY STATISTICS OF BILL OUTCOME VARIABLE, 0

Convocation | Subject Bills | Max Iterations | Predictable Points | Committees | Mean | Std. Dev. Min Max | Median
7 ATl pE]] i5 498 25 | 4542 1236 | 1253 | 8058 | 4593
7 Parliament__|_187 15 404 25 | 46.05 1231 | 2714 | 8058 | _46.03
7 Government | 39 i5 85 17 | 4230 1252 [ 1253 | 7578 | 43.84
7 President 5 6 9 3 [ 4595 8234 | 2526 | 6402 | _47.60
8 ATl 577 i5 1790 22 | 39.35 8718 | 2.667 | 65334 | 4134
8 Parliament | 406 15 1257 2 | 3949 8437 | 2.667 | 6534 | 4133
8 Government 133 15 437 20 | 38.64 9.135 | 9.143 | 58.286 40.76
8 President 38 i5 9% 10 | 3886 10.19 | 4952 | 63429 | _41.43
its analysis. Finally, we state our limitations, conclusions, and Phase Space Diagram
avenues of future work. o
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rest of the work. While the voting system is uncommon, it is
not unique. For example, Russia, Estonia, and Philippians all (b)
require preliminary votes on their bills. Fig. 1. Phase portraits of percentage of votes for. (a) Convocation 7.

B. Data

The Verkhovna Rada is broken up into convocations or a
legislative term of office. Typically, a convocation spans two
years. Here, we analyzed convocations 7 and 8. The context
surrounding these convocations is drastically different due to
the Ukrainian revolution of 2014. This revolution happened
in the middle of convocation 7, and therefore, we expect
that the voting is significantly more polarized than that of
convocation 7. It is of interest, then, to see if these contextual
differences can be overcome with our model.

We only focus on the roll call data and basic information
about the bills. For each iteration of each bill, the MPs were
listed along with the vote that they cast. Additionally, each
bill has a label indicating the sponsoring subject (parliament
member, cabinet member, or the president) and the sponsoring
committee. Summary statistics of v broken out by convocation
and by subject is shown in Table 1. These factors are modeled
individually to analyze their effect on bill behavior.

We are primarily interested in bill outcomes, which only
depend on the percentage of votes a bill receives. Hence,

(b) Convocation 8.

the data were collapsed into the percentage of votes “for” each
iteration or v. Since this paper investigates v as a dynamic
variable, its phase portrait is shown in Fig. 1. Phase portraits
show the relationship between a variable and its derivative,
so a structured diagram justifies the use of a differential model.
Here, we see an inward spiral for both of these equations. This
is seen by picking an initial point and following the arrows
at that point. In terms of theory, the difference between a
spiral inward (toward the x-axis) and a spiral outward (away
from the x-axis) is huge. Inward spirals are the characteristic
of stable models, meaning that long-run solutions are stable.
In our context, this means that bills will eventually reach
a stable amount of votes for or that less and less MPs are
willing to change their vote. Fig. 1 shows that negotiations,
discussions, and trading favors among members of the Rada
result in a convergence process, such that those bills that pass
are likely to do so by a slim margin. Since voting sends a
strong signal on position, choosing one of the nonvote options
may be safer even when an MP favors the bill. In countries
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where the state controls the legislature or where consensus is
encouraged, we would expect to see the convergence process,
resulting in a higher margin of passing for those bills that
are voted to pass. Furthermore, it seems that we may be able
to find the long-run result of bills after only two or three
iterations. This is the general goal of this work.

III. RELATED WORK

Traditionally, roll call voting has been analyzed spatially.
In the simplest case, both legislators and voting choices are
placed on a single political dimension. Based on a legislator’s
position relative to a choice, a probability of their vote “for”
is determined. An example of a simple spatial model is given
in Weissberg’s dissertation [23]. Closely related to this is the
concept of a Guttman scale, in which choices are ordered such
that if a legislator agrees with one choice, they will agree with
all preceding choices.

MacRae acknowledged that a 1-D political space is insuf-
ficient and proposed a method for calculating other dimen-
sions [14]. Poole, Clausen, and others have used these political
dimensions as the basis for legislative decision-making [3],
[17]-[20]. This became even more popular through the cre-
ation of NOMINATE, which expanded MacRae’s “crucial
gap” between defining the dimensions and calculating the
distance between them. All of the models rely on voting
history and bill source information to place entities spatially.
Additionally, some of them even need to segregate the data
by the official party or to pare down the resulting dimensions
to get meaningful results [3], [14]. Furthermore, scaling to
obtain meaningful dimensions, Bayesian inference methods
have been investigated [9], [13].

Most of these models were created with the United States
Congress in mind. In application to the U.S. Congress, the con-
cept of “dynamics” usually refers to how opinions or other leg-
islative characteristics change in time. Dynamic spatial models
have been investigated through the use of Markov chain Monte
Carlo [16]. More recent work by Duggan and Kalandrakis [6]
and Kalandrakis [10] has looked into dynamics through game-
theoretic models of roll call votes and of the political status
quo. A game-theoretic model of legislative voting still attempts
to model individual decisions and thus requires contextual
information. In this paper, however, we are not looking at long-
term individual behavior, but rather short-term group behavior.
To the best of our knowledge, a dynamic model of an overall
legislative system capable of predicting voting outcomes on
bills has not been attempted.

Differential equations are the prevailing model used to
describe systems with a temporal component. Differential
models are that the dependent variable is a function of its own
derivative. There are many applications in which the change of
a variable is just as significant as the variable itself. Physics,
for example, models systems through acceleration, which is
the position’s second derivative. Fields, such as physics, have
laws that can be used to derive differential models’ parameters.
In other domains, such as roll call analysis, these laws are not
available, and thus, parameters must be estimated from data.
This process is known as state-space identification or system

identification [8]. The goal of this paper is to draw on this
literature while creating interpretable models. We believe
that analytic models with a relatively few terms are most
interpretable, and therefore, we constrain our results to meet
this criterion. Interpretability will be further discussed in
Section IV-D.

As discussed by Brewer et al. [4], there are many ways to
estimate linear model’s parameters, such as shooting, b-spline
collocations, and methods based on derivative estimation [1],
[5], [7]. The first two models minimize the error between the
data and the model’s output. Although this is intuitive, it relies
on the numerical integration of the model. The derivative-
based method is named for its use of estimated derivatives to
fit parameters rather than numerical integration. This scheme
allows us to define the model such that analytic solutions
are guaranteed. While using b-spline collocations could result
in an analytic solution, a long series of polynomials will
be significantly less interpretable than the solutions of a
simple second-order model. As such, we will proceed using a
derivative estimation method of finding a second-order linear
model, fully described in Section IV-A.

This paper expands on preliminary analysis of Ukrainian
voting dynamics [15]. The preliminary work used 78 bills from
convocation 8, while here we analyze 577 bills from convo-
cations 8 and 231 bills from convocation 7. This allows for
comparison between convocations with large contextual differ-
ences. Additionally, a more appropriate minimization scheme
has been implemented. In the preliminary work, we also found
evidence that legislators responded differently to presidential
bills rather than standard bills. There is a prior work studying
whether or not MPs face consequences for voting against their
party or political leaders. Canes-Wrone et al. [2] find that there
are benefits to voting against their party, such as increased odds
of retaining their position. Furthermore, Kauder et al. [11]
failed to find evidence that MPs are punished for voting against
their party in Germany. We further investigate this question by
studying the difference in MP behavior regarding presidential
bills and again conclude that MPs are quicker to conform
with the greater legislature when bills are sponsored by the
president.

Finally, we expand on previous work by the introduction of
the vote switching network. While the analysis of the aggre-
gate behavior of the legislature is a powerful and insightful
method, the ability to analyze specific MPs is lost. Through
the vote switching network, however, we leverage our group-
level insights to create an influence network at the MP level.
The network, then, is analyzed with centrality measures to find
powerful MPs.

IV. RoLL CALL VOTES AS A DYNAMIC SYSTEM
A. The Model

In contrast to previous work focusing on individual
decision-making, we propose to model the legislative body
as a single unit. This simplification still gives insights to bill
outcomes without the complexity of modeling individual MPs.
Under this framework, bills are instances of a larger process,
and all follow the same set of rules. We also introduce the
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vote switching network in Section V to combat the issue of
lost granularity.

The legislature is modeled together by collapsing the prob-
lem to a single variable, v, the percentage of votes in favor of a
bill. Our hypothesis is that this variable’s behavior is a function
of its iteration, i, meaning that given knowledge of previous
votes on a bill, we can make predictions about future iterations.
A preliminary test of this hypothesis is completed through
the visualization of the variable’s phase space, as shown
in Fig. 1. In the phase diagram, we see a spiraling struc-
ture, indicating that initial votes may ultimately indicate their
fate.

This process could potentially be modeled with a Markov
Chain, but it would assume that only the previous vote mat-
ters. Using an ordinary differential equation (ODE), however,
the vote’s change matters. This model is more intuitive; if a
bill is gaining support from one iteration to the next, it will
likely continue to do so. Furthermore, a spiraling structure in
phase space may be captured using an ODE. As such, we will
proceed with that model in mind. We propose a simple second-
order homogeneous equation of the form

d*v do

A— +B— +C =0. 1
dtjL dtJr M

This model is proposed for two reasons. First, it ensures an
analytic solution. Analytic solutions are significantly more
interpretable (see Section IV-D.) Second, this is the simplest
possible model that may capture the spiraling phase space.
Success with this model shows the power of the dynamic
approach, as a more complex differential model can always be
used. A more complex model may include higher order or non-
linear terms and/or should be nonhomogeneous.

While votes are discrete, our model assumes that the vari-
able v is continuous in time ¢, instead of discrete in i. To pre-
dict votes, then, we say that votes occur at regular intervals
of an unknown parameter, «, i.e., votes are predicted only at
regular intervals, #;, where #; = ai. The interval, a, can either
be taken into account when calculating the derivatives or in
the model equation itself. Since a is unknown, it is inserted
into the model equation directly. Typically, the highest order
term does not have a coefficient. Thus, after normalization,
the final model equation becomes

0" +aCyv’ +a’Cyo = 0. 2)

From here, the equation is solved analytically. If the char-
acteristic polynomial has real roots, the solution form will be

v(t) = Cre"" + Cre™. (3)
With complex roots, the solution becomes
v(t) = Cre" cos(rat) + Cae"''sin(rat). 4)

It is possible that the characteristic polynomial has a repeated
real root, but this is highly unlikely since 2 is numerically
estimated.

Regardless of the form, the first two votes are fit exactly
for each bill through the coefficients C; and C,. This
is only possible because 2 ensures an analytic solution.
Without an analytic solution, simulation from the first vote
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would require an estimate of the initial derivative, leading
to an incorrect second vote despite having knowledge of its
outcome.

Finally, there are two main ways that the model can be
used. The first is to fit parameters to the first two votes of
a bill and use the resulting function to predict many votes
ahead. This method will be referred to as the “simultaneous
prediction” method. The second method is to only predict one
vote at a time. The initial conditions of the model are updated
to be the two most recent votes by refitting the C values.
This method will be referred to as the “updated knowledge
method.” Since this method seems more practical, it will be
the primary method used for analysis.

The use of a differential model may not seem much different
from a standard regression, but the implications are significant.
With this approach, a single equation [see (2)] captures the
behavior of the entire legislature. In this model, bills are not
independent events but instances of a larger process, and all
follow the same set of rules.

B. Fitting Parameters

To fit the model parameters, an objective function was
defined based on (2)

N
F= Z(DZ + aCyo) + a>Cyop)? (5)
b=1

where b represents the individual vote and N is the total
number of votes that have a calculable double derivative. This
equation is simply the model equation calculated over all
the data points available, squared. Squaring the values allows
minimization of F to converge near 0 rather than blowing up
with large negative coefficients. Thus, minimizing this function
over the coefficients a, C,/, and C, leads to the model equation
that best fits the data.

This objective function relies on the second derivative of
the voting signals, which are originally discrete. To esti-
mate these derivatives, we fit each set of three consecutive
votes with a quadratic function and use the derivatives of
the quadratic function. While prior work suggests the use
of splines (see [5]), this method requires only three data
points, and the same number is required to predict one
vote.

Note that the objective function sums over all instances of
votes with a calculable double derivative, which may or may
not include multiple votes from the same bill. Using multiple
points from a single bill is a valid operation, because it is the
only way to ensure that each individual bill signal follows the
model equation.

Since the objective function basically sums over the data,
it is filled with local minima. To find a global minimum,
the differential evolution algorithm was used [21]. This sto-
chastic algorithm finds the global minimum of a restricted
search space which we defined as: o« € [0,2],C, €
[-5, 5], C, € [-5, 5]. Since alpha only adjusts discrete time to
continuous, only positive values are considered. The resulting
coefficients are then used to derive bill trajectories.
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TABLE II

FIT MODEL PARAMETERS FOR (3) AND (4). MEAN AND MEDIAN REFER TO
THE PREDICTION ERROR. FRAC. REFERS TO THE FRACTION OF VOTES
CORRECTLY PREDICTED BASED ON THE MAJORITY THRESHOLD.

IN ALL CASES, THE UPDATED KNOWLEDGE METHOD WAS
USED. NOTE THAT ONLY PRESIDENTIAL MODELS HAVE
REAL ROOTS OR DIFFERING SIGNS

Convocation | Model Roots 1 r2 | Mean | Median | Frac
7 All Imaginary | -0.045 | -0.284 14.0 7.57 | 0.770
7 Parl. Imaginary | -0.037 | -0.265 13.9 7.51 | 0.765
7 Cabinet | Imaginary | -0.127 | -0.338 132 7.13 0.8
7 Pres. Real 3.27 | 0.086 | 328.0 202 | 0.333
8 All Imaginary | -0.015 | -0.193 10.2 6.16 | 0.850
8 Parl. Imaginary | -0.013 | -0.202 9.57 5.63 | 0.864
8 Cabinet | Imaginary | -0.062 | -0.155 11.0 6.98 | 0.826
8 Pres. Imaginary 0.093 | -0.173 14.0 10.1 0.77

C. Model Results

To evaluate the models, we call the absolute difference
between the model prediction and bill outcome the ‘“error,”
which will be used throughout the results. Additionally,
the model can be used as a binary classifier determining if a
vote will be above or below the passing threshold. Table II
displays the mean and median error and the fraction of
votes classified correctly for each model using the updated
knowledge technique.

1) All Data: The “all data” model was found by fitting
parameters to the entire set of bills, ignoring any data on
the subject and committee. Convocation 8 is modeled more
accurately than convocation 7, with 6.2% and 7.6% median
error, respectively. Also, 77% and 85% of votes were classified
as passing or failing for convocations 7 and 8, respectively.
This result is expected from the phase space diagram in Fig. 1.
While both convocations show a spiraling behavior, convo-
cation 7’s shape is less regular. For bills with less than
40% of votes “for,” bills are either moving vertically (below
the horizontal axis) or horizontally to the right (above the
horizontal axis.) In the same areas in convocation 8, the bills
follow a smoother clockwise curve, in which the model can
better capture. Intuitively, this means that votes changed more
quickly from iteration to iteration in convocation 7 than in
convocation 8.

A more detailed view of the “all data” model error is
shown in the box plots displayed in Fig. 2. The errors per
vote iteration are displayed for each convocation. Overall,
the error distributions are similar from iteration to iteration,
with the exception of iterations 10 and 13 in convocation 7,
as well as iteration 13 in convocation 8. These iterations have
a noticeably higher error. For convocation 8, about 75% of
predictions have 10% or lower error. For convocation 7, it is
about 15% or lower error. Both convocations have many outlier
votes with an extremely high error, which will be discussed
in Section IV-E

2) Models by Subject: Experts have suggested that pres-
idential bills behave differently than standard parliamentary
bills. It is possible that these bills are pushed through faster
since they are higher priority or that parliamentarians vote
differently out of fear of the president. To capture this, bills
were modeled separately based on their initial subject.

In convocation 7, subject-by-subject models improved
median accuracy for the parliamentary and cabinet bills but
resulted in an unusable model for presidential bills. These bills
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Fig. 2. Box plots for the absolute error from the “all data” method. Low
median error is seen, but there tails with a very high error.

were only to convert to a solution with real eigenvalues causing
predictions to blow up quickly and produce meaningless
results.

Similar results were found for convocation 8. Parliamentary
and cabinet bills had minor changes in their error distributions.
While the convocation 8 presidential model has imaginary
eigenvalues and reasonable output (a median error of 10.1%
and 77% classification accuracy,) it is unstable. This instability
is discussed in detail in Section IV-D1.

3) Models by Committee: Finally, it was hypothesized that
the remaining 25% of bills were modeled poorly due to the
content of the bills themselves. We modeled the content of
bills through the committee they were sponsored by. However,
individual committee models were unable to accurately predict
these bills, proving the hypothesis false. Splitting the data
by subject and committee was also uninsightful, especially
considering that this did not further segment the presidential
data.

4) Neural Network Comparison: For comparison, a neural
network approach was taken to model the data. For simplicity,
this is only done in direct comparison to the “all data” model.
The data were split randomly with one third being used
for testing and two thirds for training. Then, a grid search
was used to find the model with the highest accuracy. This
search included four activation functions, “tanh,” “identity,”
“logistic,” and “rectified linear unit,” three L2 regularization
penalties, 0.00001, 0.0001, and 0.001, and four hidden unit
sizes, 10, 50, 100, and 500, for a total of 48 possible models,
all with 1 hidden layer.

The best model was found to be a 100-hidden-unit network
with rectified linear unit activation functions. The L2 penalties
were 0.001 and 0.0001 for convocations 7 and 8, respectively.
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The median test error for convocation 7 was 4.98%, with
25% of votes having > 12.4% error. The fraction of votes
classified correctly was 0.757. For convocation 8, the median
test error was 3.36%, with 25% of votes having > 8.7% error.
The fraction of votes correctly classified was 0.925. In both
convocations, the neural network approach led to lower median
error predictions, but it still had 25% of votes with a relatively
high error. In convocation 7, our method better-classified votes
as above or below the passing threshold. In convocation 8,
however, the neural network model was a better predictor.

D. Model Discussion
Generally, the spiraling behavior of the bills in phase space
shows an underlying structure to the legislature that is mostly
independent of a bill’s actual content. This structure is stable,
that is, bills on either side of 50% approach neutrality, slow
down, and stop. This indicates that MPs are willing to show
strong support/opposition to a bill in the early votes. In the
following iterations, some MPs change their vote. As the

iterations increase, less and less MPs are willing to change

their vote, and a stable outcome is reached.

Which side of 50% bills stop on likely determines its
success or failure. The key point of this underlying process is
that the second vote determines a bill’s initial trajectory, which
tends to determine the trajectory over its lifetime, allowing it

to be modeled and predicted.

1) Model Behavior: As experts suggested, the behavior of
presidential bills is different from that of parliamentary bills.
Since the presidential bills have eigenvalues of different signs
(see Table II), the model is unstable. The system’s instability is
visualized in Fig. 3(b), which displays the presidential model’s
phase portrait for convocation 7. Where the “all data” model,
shown in Fig. 3(a), has a spiral in behavior, the presidential
model spirals outward. Again, the difference can be seen by
picking an initial arrow on the diagram, following its direction,
and adjusting when encountering other arrows. The spiral
outward leads to unreasonable predictions quickly, which is
why it is unsuccessful if applied to bills with many iterations.
For bills with a few iterations, however, this model may be
explained intuitively through fear of the president. On the first
vote, MPs may vote as they wish. By the second vote, they
know what everyone else has voted and change their votes
accordingly. On the third vote, however, MPs can see if the
bill is gaining popularity or losing it. If it is gaining popularity,
and thus likely to pass, many MPs also agree to vote “for,” as
to not unnecessarily be on the wrong side of the president’s

bill.

Fig. 3.
tion 7 presidential ODE.

A more intuitive way of understanding the models is by

visualizing their predictions for a single bill. Fig. 4 shows the

trajectories of models from both convocations given a single

bill. Fig. 4(a) shows each model’s prediction given votes from
a bill in convocation 7, and Fig. 4(b) shows the same but
for a bill in convocation 8. Both the models follow a near-
linear trajectory from the two preceding votes. However, each
model gives slightly lower than an exact linear trajectory, with
the convocation 8 model dipping further than the convocation
7 model. Hence, the models are sensitive to large changes in
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Fig. 4. Modeled trajectories compared to the actual votes for (a) convoca-
tion 7 bill and (b) convocation 8 bill. “All data” models were used for both
figures. Blue line: convocation 7 model. Green line: convocation 8 model.

a single vote. This is shown in iterations 68 in Fig. 4(a). The
large dip from vote 6 to 7 causes both models to predict a
very low (effectively zero) vote for iteration 8, but in reality,
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the bill gained popularity after the dip. Since convocation
7 has more of these irregular voting patterns, this modeling
technique performs worse overall, as seen in Table II.

It is important to note that the mostly “straight-shot” out-
come of the model is an artifact of our choice of method
rather than the model ODEs. If votes were predicted using
the simultaneous prediction method, iterations greater than 3
would no longer seem like a linear prediction.

E. Poorly Modeled Votes

A quarter of the votes remain elusive, with errors above
10% for each of the models. Two potential sources of this
error are the bills themselves and the vote iteration. The error
heat map in Fig. 5 is used to distinguish between the two. If the
particular bills were hard to predict, the heat map would have a
few dark rows. If the critical iterations were harder to predict,
the heat map would have a few dark columns. It appears that
the very high error votes happen sporadically, but there are
bills with high error overall.

The trajectories of bills with the highest average error are
plotted in Fig. 6. These trajectories are all filled with large,
seemingly random jumps. One bill in convocation 7 falls from
over 60% to 10% in a single iteration, has eight votes with
a very few votes “for,” and finally climbs back up over 60%.
The simple differential models used here are simply incapable
of capturing such eradicate behavior. In fact, it is hard to see
how any model could predict all of the trajectories in Fig. 6,
knowing only the first two votes. Even the 100-hidden-unit
neural networks trained on the data had a high error for about
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Fig. 6. Trajectories for the top five worst modeled bills in terms of the
number of iterations with > 10% error. (a) Convocation 7. (b) Convocation 8.

20% of the votes. It seems that while higher order models
could still be used to increase accuracy, the use of contextual
domain knowledge is the only way to predict some votes.
Looking at the bill’s content reveals that the bills in convo-
cation 8 covered topics, including pension tax, college funding,
natural gas regulations, orphan care, and court fees. Convoca-
tion 7 bills covered topics, including the gas transportation
system, corporate tax, administration reform, financial bill
procedure, and food market regulations. In both cases, the bill
topics vary dramatically. To complicate things further, the divi-
sive points in bills are often cleverly obscured or hidden,
further emphasizing the need for expert legal analysis.

V. VOTE SWITCHING NETWORK

Section IV illustrated the power of viewing roll calls as a
dynamic process, specifically using the change from the first
to the second vote. It follows that the parliamentarians who are
driving the change in the first two votes are highly influential.
As such, a network can be constructed from the change in the
first two votes, and centrality measures can be used to find
influential parliamentarians.

The vote switching network is created from the first two
votes on each bill. If an MP changes their vote, an edge
is added from them to whoever casted this vote initially,
that is, if an MP changes their vote from “abstain” to “for”
they are switching their vote to those who initially voted
“for,” and the network will reflect that. The weight of the
edge is proportionate to how rarely the vote cast is. Since
votes “against” are very rare, switching to match someone’s
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Fig. 7.  Vote switching network visualized. Links with a weight below
the mean + one standard deviation are not shown. Modularity is 0.294 for
(a) Convocation 7 and 0.080 for (b) Convocation 8.

“against” vote is weighted heavily. The edges are summed
over all the bills to obtain the final weighted and directed vote
switching network. The networks for both convocations can
be seen in Fig. 7.

The vote switching network for convocation 8 shows more
of a solid core than that of convocation 7. Convocation 7 seems
to have almost two separate cores, with common members
between them. This may suggest more tension within the
legislature, as we would expect given the political revolution
occurring at the time. The modularity for the convocations is
0.294 and 0.080 for convocations 7 and 8, respectively, which
also highlights this difference.

Both networks were found to be disassortative, with coeffi-
cients —0.012 and —0.016 for convocations 7 and 8, respec-
tively. This result is intuitive from the motivating theory of the
legislature; a disassortative vote switching network implies that
MPs who often switch their vote do so to match those that do
not switch their vote. This gives credence to our underlying
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Fig. 8. In- and out-degrees are shown for each MP, colored by official party
affiliation. (a) Convocation 7. (b) Convocation 8.

assumption; influential MPs are less likely to switch their vote
than others.

At an individual level, an agent’s degree can be used to
infer their influence. The in-degree and out-degree are plotted
by a parliamentarian in Fig. 8. It is expected that a highly
influential individual would have many people switching their
votes to match theirs and would not change their votes as often
as others. Thus, the closer to the bottom right-hand corner
in Fig. 8, the more influential the MP is likely to be.

In convocation 8, influential members falling in the bottom
right of Fig. 8 come from the Peter Porchenko Bloc and
People’s front, the two dominant parties. In convocation 7,
however, parliamentarians with high in-degree also have high
out-degree, so the clearly influential portion of the plot
is empty. We can see that many of the individuals with
high in-degree are coming from one of the All-Ukrainian
Associations.

To analyze party relations directly, the vote switching net-
work is aggregated by party to obtain the directed party—party
network. The out-degree of each party is normalized by its
number of members. Both the degrees are plotted in Fig. 9.
Within-party votes, or self-loops, are not considered in the
distributions in order to only measure the influence between
the parties, not within them.

In these diagrams, the parties fall more neatly along an
“influence line” connecting the top left to the bottom right.
In convocation 7, the Economic Development party is the
least influential, and the Party of the Regions is the most.
While convocation 8’s layout is less clear, the Peter Porchenko
Bloc is the most powerful, and Samopovich is the least.
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This diagram can also be used to find insular parties, which
have low in- and out-degrees. Convocation 7’s most insular
parties are Sovereign European Ukraine and The Ukrainian
Democratic Alliance for Reform (UDAR). Revival is the most
insular in convocation 8.

More quantitatively, the vote switching network can be
analyzed using centrality measures to find the most influential
parliamentarians. The results from this analysis are shown
in Table III. Two of the leaders from the convocation 7 vote
switching network belonged to UDAR, while the third was
part of the All-Ukrainian Association (Fatherland). In con-
vocation 8§, UDAR merged with the Peter Porchenko Bloc.
Although Fatherland remains in convocation 8, Brichenko
Igor Vitaliyovych still switched to the Peter Porchenko Bloc,
putting the top three influential members of convocation 7 in
the same party during convocation 8. The most central mem-
bers of the convocation 8 vote switching network, however,
are not associated with the Peter Porchenko Bloc. Instead, two
have no official party and one is a member of the Opposition
Bloc, the leading force against the presidential party. Future
work may involve domain experts diving deeper into the
backgrounds of key parliamentarians to better understand why
they are central in this network and the significance of the shift
in power to members without an official party affiliation.

VI. THREATS TO VALIDITY

Perhaps the biggest threat to validity comes from the data
itself. Without contextual information about the individual
votes, it is impossible to distinguish between a vote to put
a bill into law and a vote for special proceedings on a bill.
For example, a vote may be cast on whether or not a bill

TABLE III

TopP THREE MEMBERS OF THE VOTE SWITCHING NETWORK BASED ON
AN ENSEMBLE OF CENTRALITY MEASURES AS OUTPUTTED FROM AN
ORA KEY ENTITIES REPORT. THESE MEMBERS SEEM TO BE HIGH
RANKING BUT NOT OFFICIAL PARTY LEADERS

Conv. | Name Party

7 Natalya V. Agafonova UDAR

7 Brichenko Igor Vitaliyovych Fatherland

7 Chumak Viktor Vasilyevich UDAR

8 Illenko Andriy Yuriyovych No Party

8 Marchenko Alexandr Aleksandrovich | No Party

8 Shurma Igor Mikhailovich Opposition Bloc

should be put through an expedited process. This type of
vote would undoubtedly have different support than a vote
for the bill itself, but we are forced to treat them as the
same. Additionally, without labels for these votes, we cannot
determine how prevalent they are in the data set. This is not
ideal, but it is expected that the removal of special votes would
increase the homogeneity of each bill’s series of votes. If this
was in fact the case, our results would be an underestimate of
the modeling technique’s power.

Although the fit model for presidential bills in convocation 7
had real eigenvalues, there were only nine predictable points
to fit parameters with. With more bills and more votes, it is
possible that the model would take a different form, as it did
in convocation 8. Convocation 8 had 96 predictable points
from presidential bills and still led to an unstable model,
giving more solid evidence that voting behavior is different
for presidential bills.

The vote switching network attempts to represent parliamen-
tarians switching their votes due to another parliamentarian’s
influence in the prior vote. The underlying assumption to this
network is that when one MP is strongly influenced by another,
they will copy their vote frequently. If a parliamentarian is only
convinced to switch their vote for a few important bills, it will
be very hard to detect in this network. The procedure also
weights votes “against” very heavily, so it is hard to detect
any influence spread through absences or votes in favor of
bills. In the future work, contextual information about specific
votes or parliamentarian relationships may be used to augment
information contained in the vote switching network.

VII. CONCLUSION

We have analyzed a legislative system that differs from
those typically studied in the literature, though also appears
in Russia, Philippines, and Estonia, to name a few. Under this
system, preliminary roll calls are cast on bills. In contrast to
prior work focused on individual decision-making, we collapse
each vote into a single variable, the percentage of votes in
favor of the bill, as it is what determines the bill’s success.
The sequential revoting on bills leads to a time series of the
percentage of votes in favor of each bill, making it a dynamic
variable. The traditional tool for modeling dynamic systems
is a differential equation. While fields, such as physics, have
universal laws to generate differential models, there are no
such laws in place for roll call analysis. As such, we predefined
our model to be a second-order linear and homogeneous equa-
tion and fit its parameters to data using differential evolution.



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

This model was selected for its simplicity, which has two
benefits. First, since legislative dynamics have yet to be studied
thoroughly, the simplest possible models should be used in the
early stages as to show the area’s promise. Second, this specific
model guarantees an analytic solution, allowing for an exact
fit for the first two votes.

Our modeling process was successfully applied to convo-
cations 7 and 8 of the Rada. Not accounting for sponsoring
subject, the models achieved a median error of 7.6% and
6.2% while correctly classifying 77.8% and 85% of votes
as passing or failing for convocations 7 and 8, respectively.
It was shown that this simple dynamic model is on-par with a
neural network approach. Accounting for subject gave modest
improvements in performance and highlighted the difference
between presidential bills and all others. For both convoca-
tions, the only unstable models were those of the presidential
bills. This result is in agreement with the expert’s sugges-
tions that parliament member’s voting behavior changes for
presidential bills. Theoretically, the instability in our models
suggests that parliamentarians are more influenced by popular
opinion on presidential bills. Prior work by Kauder and others
suggests that MPs may not be punished for voting against
their party but have not looked at whether they could fear
repercussions for voting against the president, as we see here.
Further investigation into the subject may be appropriate. More
practically, this instability also suggests that presidential bills
are pushed through the legislature faster, since MPs flip their
votes quickly where fewer votes are needed.

The differential model demonstrated the power of the
change from the first vote to the second, but lost individual-
level information. A vote switching network was created to
use this information at the parliamentarian and party level.
This network had directed links indicating how often one
politician switched their vote to match another’s. Analysis of
this network found key members of the Rada from UDAR and
Fatherland who all became members of the Peter Porchenko
Bloc in the following convocation. Potential leaders of Con-
vocation 8 were also found though they were not connected
to the presidential party.

We have demonstrated the potential of viewing roll call
voting as a dynamic process in two ways, using very simple
techniques. We have also demonstrated that these techniques
were effective on both convocations 7 and 8 of the Rada, which
underwent drastically different political climates. Given the
effectiveness of this framing, we believe that this work opens
the door to more complex differential models as well as more
nuanced vote switching networks. Furthermore, a combined
model that accounts for group level and individual level
changes simultaneously through vector autoregressive models
that may be studied in the future work. Beyond this, future
work must include domain knowledge to get at the elusive
quarter of votes that seem to be unpredictable through a strictly
quantitative model.
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