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Abstract—Community-aware centrality is an emerging research area in network science concerned with the importance of nodes in
relation to community structure. Measures are a function of a network’s structure and a given partition. Previous approaches extend
classical centrality measures to account for community structure with little connection to community detection theory. In contrast, we
propose cluster-quality vitality measures, i.e., modularity vitality, a community-aware measure which is well-grounded in both centrality
and community detection theory. Modularity vitality quantifies positive and negative contributions to community structure, which
indicate a node’s role as a community bridge or hub. We derive a computationally efficient method of calculating modularity vitality for
all nodes in O(M +NC) time, where C is the number of communities. We systematically fragment networks by removing central
nodes, and find that modularity vitality consistently outperforms existing community-aware centrality measures. Modularity vitality is
over 8 times more effective than the next-best method on a million-node infrastructure network. This result does not generalize to social
media communication networks, which exhibit extreme robustness to all community-aware centrality attacks. This robustness suggests
that user-based interventions to mitigate misinformation diffusion will be ineffective. Finally, we demonstrate that modularity vitality
provides a new approach to community-deception.
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1 INTRODUCTION

MODULAR structure is a key phenomenon in the study
of real-world networks. Networks from a wide array

of disciplines exhibit modular structure, meaning that nodes
tend to be found in well-connected groups [1]. Discov-
ery of these clusters have been repeatedly shown to be
meaningful within their context though empirical studies
[2], [3], [4]. Further, a “No Free Lunch” theorem has been
proved for community detection, stating that no algorithm
can uniquely solve community detection, and implying that
multiple valid community definitions can exist for a single
network [5].

Another fundamental question in Network Science is
that of centrality. Put simply, how important is each node
in a network? Many centrality measures have been defined
over the years, each measuring “importance” in a different
way. Classically, centrality measures are defined to be a
graph invariant. However, network communities have been
shown to be pervasive in nature, and it has been shown
that networks can have multiple meaningful definitions of
communities. So, it is natural to ask the question: how
important is each node in a network given some definition
of groups? When group structure is considered, the relative
importance of nodes may change. For example, a fairly
average node in classical terms may be a hub within a small
community, boosting its importance within this context.
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In this work we refer to centrality measures accounting
for community structure as “community-aware centrality
measures.” The question of community-aware centrality lies
at the intersection of the fundamental areas of centrality and
community structure. As such, applications to community-
aware centrality are far-ranging. Here, we show applications
to immunization strategies for infectious disease, robustness
testing for large infrastructure networks, and privacy-based
data filtering strategies.

Most of the existing community-aware centrality mea-
sures extend classic centralities by considering within-
community links and between-community links separately,
before applying a weighted sum to get a single score [6],
[7], [8]. This approach acknowledges the difference between
links which fall within communities and those which fall
between them, but ultimately gives no insight into what
role a node is playing; hub-nodes and bridge-nodes can
receive similarly high values without a way to distinguish
them. Further, the weighting schemes to date have been
hand-crafted, rather than derived from existing community
theory, making them somewhat subjective. Cherifi et al.
have acknowledged that there is room for improvement on
this front [9].

When discussing the modularity matrix, Newman in-
troduced “community-centrality,” which measures a node’s
potential to contribute to group structure [10]. Since the
measure was of potential contribution, community-centrality
is a classical centrality-measure, independent of any defined
partition. To obtain a community-aware centrality from a
similar line of reasoning, we propose to measure a node’s
actual contribution to the group structure encoded in a
specific partition. By doing so, we obtain a community-
aware centrality grounded in community detection theory
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and free from hand-crafted weighting schemes.
For the measure of actual node contributions, we turn to

vitalities [11]. In their work, Koschützki et al. define vitality
as the difference between the value of an arbitrary real
function, f , applied to the graph G and the same function’s
value when applied to the graph G with the vertex of
interest removed. By doing this, a single node’s contribution
can be measured and the observed value can be positive or
negative. This is closely related to the key-player problem,
which roughly asks to what extent a network is relying on a
node’s presence to remain cohesive [12].

If the graph index is chosen to be a cluster quality metric,
the vitality, then, measures a node’s contribution towards
group structure. There are many such cluster quality metrics
in the literature to choose from [13]. Vitalities have pre-
viously only been applied to classical centrality measures,
thus, they have been defined as functions that only take
graphs as arguments. Since we are interested in community-
aware centralities and vitalities, we will define vitality as a
function that takes a graph and its partition as arguments.

Nodes can contribute positively or negatively to com-
munity structure. This difference is encoded in the vitality’s
sign, allowing us to to distinguish nodes based on their
role. Nodes which have negative cluster quality vitality
are detrimental to group structure, meaning that they are
connecting groups, making them a community bridge. Sim-
ilarly, positive cluster quality vitality nodes are community
hubs.

The focus of this work is on a specific cluster quality vi-
tality - modularity vitality. Newman’s modularity is used as
the objective function for many popular community detec-
tion algorithms, making it a natural choice to measure clus-
ter quality [14], [15], [16], [17], [18]. Thus, this measure has
stronger grounding in community theory than those prior,
with no need for a hand-crafted weighting function. We
show that manipulation of the original modularity function
leads to a scalable method of calculating modularity vitality,
where the calculation for all nodes scales as O(M + NC)
time, where M is the number of links, N the number of
nodes, and C the number of communities.

Modularity vitality was tested on generated modular
networks and on two real-world networks: the Pennsylva-
nia Road Network, and a large Twitter network collected
from the discussion of the Canadian Election of 2019. In
our experiments, modularity vitality out-performs existing
community-aware centralities showing potential applica-
tions for immunization strategies, control of diffusion over
networks, and for robustness testing.

While other studies have demonstrated the fragility of
infrastructure networks, in our first case study, we show
that the road network is over 8 times more fragile than could
be seen with existing community-aware centrality measures
[19]. By targeting only 1.6% of nodes with lowest modularity
vitality, the PA road network’s largest component can be
reduced to less than 1% of its original size, effectively
destroying the network.

In the second case-study, the social media commu-
nication network was extremely robust, as demonstrated
through the ineffectiveness of all community-aware cen-
trality attacks on the network. The robustness of Twitter
networks has serious implications for Social Cybersecurity

[20], [21]. One of the core areas in this emerging discipline
is developing counter-measures for the mitigation of fake
or misleading news on social media. The problem of “Fake
News” has gotten more attention recently, though many
basic questions in the space are left open [22]. It is often sug-
gested that network metrics can be used to identify points
for stopping the spread of misinformation [23]. However,
our results suggest that this is not the case. The robust-
ness of Twitter networks suggest that even well-targeted
interventions at the user level are unable to hamper the
ability of information to spread. This result is aligned with
the observed phenomena that misinformation continually
resurfaces on social media [24].

Lastly, we show that modularity vitality can be used to
perform greedy attacks to decrease modularity. This gives
an alternate approach to the community-deception problem,
which seeks to obscure communities from detection algo-
rithms by altering network links in order to preserve pri-
vacy. Modularity vitality was used to perform community-
deception on a large twitter network. The method decreased
modularity by 41%, however this decrease comes at the cost
of 2% of nodes and 45% of edges. While a removal of 2% of
nodes leads to a sizable decrease in modularity, this process
has diminishing returns. This suggests that a scalable and
effective strategy for community deception is to obscure
which popular accounts a user follows. This differs from
the typical strategy, which rewires edges instead of deleting
them.

2 PRIOR WORK

2.1 Preliminaries

Before describing the prior work, we begin with the nota-
tions and definitions that we will rely on for the remainder
of the work.

Definition 2.1 (Graphs). A graph is a pairG = (V,E) where
V is a set of nodes or vertices, and E of is a set of edges or
links. Let us denote N = |V | as the total number of nodes
and M = |E| as total the number of edges. Let vi ∈ V
denote a node i and ei,j = (vi, vj , wi,j) ∈ E denote an edge
between nodes i and j with weight wi,j > 0. Finally, the
adjacency matrix A is is an N x N matrix with Ai,j = wi,j
if ei,j ∈ E and Ai,j = 0 otherwise. For this work we only
consider undirected graphs, that is Ai,j = Aj,i.

Definition 2.2 (Partitions). A partition of graph G is
C = {γ1, γ2, ..., γC} where γi is the set of nodes within
community i s.t. γi ∩ γj = ∅, i 6= j,∀i, j ∈ {1, . . . , C},
and γ1 ∪ γ2 ∪ ... ∪ γC = V . We denote C = |C| as the
total number of communities. For convenience, we define a
community vector, c = [c1, c2, ..., cN ], where ci indicates the
community of node i.

Definition 2.3 (Total and Community Degrees). The total
degree of a node vi is equal to the sum of its edges. Let us
denote this by ki =

∑
j Ai,j . Next, define the community-

degree of node vi as the sum of edges towards nodes
belonging to community c. We denote this as

kci =
N∑
j=1

Ai,jδ(cj , c)
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where the δ(a, b) is an indicator function s.t. δ(a, b) = 1 if
a = b, 0 otherwise.

Definition 2.4 (Internal and External Degrees). The internal
degree of node vi is the sum of edges connected to vi within
its community. That is kinternal

i = kcii . The external degree of
node vi is the sum of edges connected to vi and communities
not equal to that of vi. That is

kexternal
i =

N∑
j=1

Ai,j(1− δ(ci, cj)) = ki − kinternal
i .

The number of internal links in the graph G is given by
M internal = 1

2

∑
i,j Ai,jδ(ci, cj).

Definition 2.5 (Group-Fraction). Let G be a graph and C be
a partition of the graphG. The group-fraction of community
c is given by

µc =
∑
vi∈γc

kinternal
i

ki
=
∑
vi∈γc

kci
ki
.

Note that this is not equal to the fraction of edges within a
community.

2.2 Modularity and Grouping

There is no “best” way to evaluate cluster quality and as
such, many cluster quality metrics have been defined [13].
While vitality measures on any of these cluster quality func-
tions could be an interesting and unique contribution, we
focus our work on modularity. We have chosen modularity
for several reasons. First, some of the earliest discussions
of community-aware centrality are given by Newman when
exploring modularity [10]. Next, many of the popular com-
munity detection algorithms attempt to maximize modular-
ity. Thus, studying the vitality of the quantity used to obtain
the communities in the first place keeps measures consistent.
Lastly, we will show that modularity vitality in particular
has a non-trivial vitality function which can be calculated
efficiently.

The most common definition of modularity is that given
by Newman, which is the fraction of the edges that fall
within the given groups minus the expected fraction if edges
were distributed at random [14]. The definition of Newman
modularity is as follows.

Definition 2.6. Given graph G and partition C, let us define
modularity as the fraction of the edges that fall within the
given groups minus the expected fraction if edges were
distributed at random [14]. We can write modularity Q of
the graph G as:

Q(G,C) =
1

2M

∑
i,j

(
Ai,j −

kikj
2M

)
δ(ci, cj), (1)

Modularity in this form has been studied extensively,
and the most commonly used community detection algo-
rithms seek to maximize this quantity [17]. Because it is
an NP-hard problem, many different methods have been
proposed to varying degrees of success [15], [16], [18]. The
Louvain method has prevailed for years, and has repeatedly
been shown to give meaningful communities in empirical
studies [16].

However, recently, Traag, Waltman, van Eck have shown
a flaw in the Louvain method [18]. Because of its update
step, Louvain does not guarantee that its communities are
internally connected. It was shown that, in fact, many com-
munities are often not connected when using the method
on real-world datasets. To fix this, Traag, Waltman, and van
Eck have proposed Leiden grouping, which is slightly faster
than Louvain, guarantees well-connected communities, and
often achieves higher modularity. As such, we proceed
using Leiden grouping.

2.3 Network Centrality Measures

Newman began the discussion of centrality based on com-
munity structure when studying the modularity matrix [10].
He defined “community-centrality” based on the eigenvec-
tors of the modularity matrix. Despite its name, this is a
classical centrality measure. Instead of measuring the actual
contribution of a node, community-centrality measures a
node’s potential to impact modularity. The derivation from
the modularity matrix give community-centrality a strong
theoretical link to communities, but has some drawbacks.

First, potential impact can be very different from ac-
tual impact. A related second point is that methods which
only use graph structure are unable to adapt to different
graph partitions, which is significant given that networks
can have multiple meaningful definitions of communities.
Lastly, there are some practical issues. The modularity ma-
trix is dense, making it memory inefficient. Additionally,
approximations are typically needed for computation on
large graphs.

Masuda takes an eigenvalue approach to achieve a
community-aware centrality, though not one derived from
modularity [25]. Instead, he builds off of the idea of dynam-
ical importance as defined by Restrepo et al [26]. The largest
eigenvalue of a graph’s adjacency matrix is related to the
ease of diffusion over the graph. Based on this fact, dynam-
ical importance orders nodes based on the change in largest
eigenvalue from the node’s removal. To leverage group
structure, Masuda applied this strategy to the group-to-
group network, calling it the “mod-strategy.” This method is
computationally efficient since only the largest eigenvalue is
needed, and because it is calculated on the group network,
which is far smaller than the actual network. Formally,
nodes were ordered based on the following equation:

Masi = (2ũci − x)
∑
c6=ci

ũck
c
i (2)

x =
1

λ̃

∑
c 6=ci

ũck
c
i , (3)

where λ̃ is the group network’s largest eigenvalue, and
ũ is its corresponding eigenvector. Intuitively, the value
of the eigenvector corresponds to the importance of that
group. Thus, Masuda’s method gives importance to nodes
based on the group it belongs to, and its connectivity to
other important groups. The more connections to important
groups, the higher the score, meaning that nodes bridging
communities will be ranked highly.

More recently, degree-based measures have taken favor,
due to their interpretable form and their scalability. To get
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at the relationship within and between communities, these
measures use internal degree and external degree.

One of the earlier examples is “commn-centrality,” CC,
proposed by Gupta et al [8]. This centrality is defined as
follows:

CCi =

(
1− µci
|γci |

)
kinternal
i

maxvj∈γci k
internal
j

×Rci+(
1 +

µci
|γci |

)(
kexternal
i

maxvj∈γci k
external
j

×Rci

)2 (4)

where Rci is user-defined, but is commonly chosen as
Rci = maxvj∈γci k

internal
j . The group fraction µ is used so

that internal degree takes precedence for weak groups, and
out degree takes precedence for strong groups. One issue
with commn-centrality, however, arises when a community
is disconnected from the rest of the graph. In such a case,
maxvj∈γc k

external
j = 0, so commn-centrality is undefined.

This commonly occurs, especially during network robust-
ness testing, so we do not consider commn-centrality in our
experiments.

Afterward, Ghalmane et al. have proposed a number of
alternatives which are well defined for community com-
ponents [6], [7]. The simplest of which is the number of
neighboring communities centrality, which just counts the
number of communities in a node’s immediate neighbor-
hood; we will call it bi. Expanding on this, the community
hub-bridge centrality, CHB was defined as:

CHBi = |γci |kinternal
i + bik

external
i (5)

where, again, bi is the number of communities neighbor-
ing node i. [7]. The number of neighboring communities
centrality was out-performed by the more sophisticated
community-hub-bridge centrality, so we omit it from our
results to preserve readability.

Generalizing this approach beyond just degree, Ghal-
mane et al. introduce “modular-centrality”. They note that
a graph G can be decomposed into Ginternal and Gexternal,
where only the internal or external links are retained, re-
spectively. Then, internal centrality can be calculated as:
Γinternal(G) = Γ(Ginternal), where Γ is a classical centrality
measure. The same logic can be used to obtain external
centrality. It can be seen that when Γ is selected to be the
degree, we get the same internal and external degree as
we have previously defined. Modular centrality is a two-
dimensional vector encoding internal and external central-
ity. Ghalmane et al. note that there are many ways that this
vector can be used to obtain a single number, as is needed
for ranking tasks. One of their proposed methods is the
weighted modular centrality, WMC, which takes a weighted
sum of the components:

WMCi = µciΓ
internal
i + (1− µci)Γexternal

i (6)

where µci is, again, the group fraction for community ci.
Note that this is the opposite weighting scheme as Gupta’s;
when communities are strong, modular-centrality places
preference to internal degrees. We also see Masuda’s weight-
ing giving preference to bridges. To cover the full spectrum
of these previous community-aware centralities, we also

consider an adjusted version of modular-centrality, AMC,
where the weighting scheme favors bridges:

AMCi = (1− µci)Γinternal
i + µciΓ

external
i (7)

Note that this has also been previously defined as as
“Weighted Community Hub-Bridge” centrality [7]. Due
to the similarity of the measures, we will continue us-
ing the name “Adjusted Modular Centrality.” We also
note that Ghalmane’s work has been extended to overlap-
ping communities, however this work only considers non-
overlapping community structure [27].

With the exception of Masuda’s work, these methods
all rely on a weighting scheme of internal and external
centrality. The weightings are not derived from network-
theoretic principles, but are based on observations seen in
network studies. Ideally, a centrality would be derived from
established theory, and would eliminate the need for com-
parison of subjective weighting. While Masuda’s measure
is derived from network theory, it is based on network
connectivity, rather than community detection.

For this work, we will look to vitalities, which measure
a node’s contribution to some global property [11].

Definition 2.7 (Network Vitality). For an arbitrary real
function f : G → R defined on graph space G we write
the associated vitality Vf as:

Vf (G, i) = f(G)− f(G− {i}),

for any G(V,E) ∈ G and i ∈ V . Where G− {i} denotes the
graph G after the removal of node i.

To the best of our knowledge, vitality measures of
cluster-quality functions have yet to be studied. When
cluster-quality functions are considered, the graph index
must also be a function of the network partition, C. Here,
we select f to be modularity, giving modularity vitality.

Definition 2.8 (Community-Aware Vitality). Extending the
Definition 2.7 we can write the community-aware vitality
as:

Vf (G,C, i) = f(G,C)− f(G− {i},C− {i})

Through manipulation of the modularity equation, we
show the calculation of modularity vitality for all nodes has
time complexity of O(M + NC), providing the scalability
of measures like commn and modular, while maintaining
the theoretic link to community detection. At the same
time, our modularity-derived measure is signed. Negative
values indicate nodes are detracting from group structure,
and are thus acting like community bridges. Positive valued
nodes are then more hub-like. Thus, unlike other measures,
modularity vitality shows both how central a node is and
what way the node is central.

2.4 Evaluation: SIR Models and Network Robustness

Evaluation of centrality measures can be subjective, since
different measures may be useful for different tasks. How-
ever, many of the prior community-aware centrality mea-
sures have been evaluated from an immunology perspective
[6], [7], [8], [25]. In this scenario, a disease is spreading
over a network. The centrality measure in question is used
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to determine which nodes are given immunity. Then, the
“best” centrality measure is that which leads to the smallest
outbreak. The fundamental assumption is that central nodes
will be spreaders, so immunizing them should result in
smaller outbreaks.

Typically, the most basic epidemic model is used: the SIR
model [28]. In this model, each node is either susceptible,
infected, or recovered. After an initial node is infected, it
infects in neighbors with probability p. At the same time,
the infected nodes can recover with probability r. Recovered
nodes are no longer susceptible, and can no longer spread
the disease. The simulation is iterated on until there are no
infected nodes remaining. The number of nodes that were
ever infected is called the epidemic size. By immunizing
nodes, the epidemic size can be decreased. It is the goal,
then, to pick an immunization strategy that leads to the
smallest epidemic size.

Simulations of this type are closely related to the sub-
field of Network Robustness [29], [30]. Network Robustness
refers to how a network responds to attacks. Understanding
how networks react with missing nodes or edges has impor-
tant implications in many fields, including but not limited
to biology and ecology. Attacks typically take the form of
removal of edges or removal of nodes. We will focus on
removal of nodes.

One method of evaluating an attack’s effectiveness is
through network fragmentation [31]. Fragmentation σ can
be defined as the size of the remaining largest component
Nρ relative to the initial size of the graph, N , where ρ is the
fraction of nodes removed. Fragmentation can then be given
as σ(ρ) =

Nρ
N . This is a useful measure because networks of-

ten rely on connectivity to function properly. Disconnected
components in biological, communication, or power-grid
networks are in serious danger of failing completely.

Now, we can see that immunization strategies are effec-
tively network attacks. By immunizing a node, it and its
links are removed from the network. Immunizing many
nodes fragments the network, slowing diffusion. In fact,
the fragmentation, σ, is the worst-case scenario for an SIR
model. Given the right parameterization, the disease in an
SIR model will infect all nodes in the component the disease
initialized in. This behavior is guaranteed with p = 1, and
r = 0, indicating full infection with no possibility of recov-
ery. The same effect can be achieved with other parameters
depending on how the simulated interactions play out. If
the initial node is in the largest component, the worse-
case scenario is that all nodes in the largest component get
infected. Thus, σ can be used to measure the effectiveness
of an immunization strategy without the need for expensive
SIR simulations.

Replacing simulated network flow with network con-
nectivity also results in a more fair comparison between
network metrics. Centrality measures often make assump-
tions about how flow occurs in a network, and are thus
favorable when simulated flow matches those assumptions,
and less favorable when they do not [32]. Thus, a fragmen-
tation approach does not bias the results towards centrality
measures which are best aligned with the assumptions of
the simulation.

From a network robustness perspective, different types
of attacks have been developed. In general, a centrality

measure is calculated for each of the nodes, and the node
with the highest centrality is removed, or immunized. Early
studies looked at node attacks based on degree [29]. Later,
Holme generalized this idea along with two styles of attacks:
initial and recomputed [33]. In the initial case, centralities
are calculated once and the top-k nodes are removed. In the
recomputed case, centralities are recomputed each time a
node is removed. This makes the attack more expensive to
compute, but more effective.

In this framework, attacks are defined by two char-
acteristics, the centrality measure and the style. Common
choices of centrality measure are degree and betweenness.
Betweenness has been shown to be much more damaging
to a network, but is far more expensive to compute [19],
[33]. The shorthand for these methods are based on the
acronym of the centrality and style; IB means an attack
using initial calculation of betweenness centrality, while RD
is recomputed degree.

A connection between the modular structure in networks
and their robustness has been illustrated by da Cunha et
al. in [19]. The authors developed a more complex attack
strategy which is able to fragment real-world networks far
more quickly than the simple methods previously described.
They achieve this by ensuring that nodes are attacked only
when they are in the largest component and when they are
connecting groups. This strategy is called a Module-Based-
Attack, MBA.

Though effective, attacks using betweenness centrality
do not scale to the size of networks commonly seen on
social media. For weighted networks, a single calculation of
betweenness scales as O(NM+N2 logN), making RB scale
as O(N2M + N3 logN) [34]. This makes RB intractable for
medium-sized networks, which is why da Cunha et al. use
IB as the base for their attack method [19]. However, even
IB is intractable for very large networks. Additionally, the
computation of largest component at every step adds to the
method’s complexity. The most scalable methods are those
that use an “initial” strategy with a local measure.

Based on this, we use fragmentation to evaluate
our method in comparison to the following measures:
Masuda (Mas), Community-Hub-Bridge (CHB), Modular-
Centrality-Degree (WMC-D), Adjusted-Modular-Centrality-
Degree (AMC-D), and Degree (Deg). Evaluation is per-
formed in three steps. In the first, networks are generated
to measure how different community-aware centralities per-
form under varying attack strategies. In this step “initial,”
“repeated,” and “module-based” attacks are performed.
Second, the Pennsylvania road network is studied. This
is a large highly modular network, which exemplifies the
power of community-aware centrality measures. Finally, a
large Twitter communication network is studied from the
Canadian Elections of 2019. Here, the robustness of social
media networks is demonstrated. In the second and third
steps, only “initial” strategies are taken due to the size of
the networks.

2.5 Community Deception

Community Deception has recently been formalized by
Fionda and Pirro [35]. They argue community detection is
a very powerful tool, and could potentially be too powerful
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for privacy-sensitive applications. In order to protect sen-
sitive data that is easily identifiable, community structure
should be obscured. The goal, then, is to edit a network to
prevent a specific community’s detection. The most relevant
framing they provided to the present work is Modularity-
Based Deception. In this framing, the goal is to re-wire edges
such that modularity of a community is minimized. This
approach is based on the modularity equation, similarly
to the present work, and is scalable. In a similar line of
work, Chen et al. propose a genetic algorithm to perform
a “Q-Attack,” which edits the network to minimize the
modularity of the entire network’s partition, not just that
of a single community [36]. Due to the combinatorial nature
of genetic algorithms this approach did not scale and was
only tested on nodes with approximately 100 nodes.

Waniek et al. also consider the single-community case
[37]. In this work, a modularity-inspired measure was used
to determine how well a community is concealed. The
authors then randomly rewire a specified number of inter-
nal edges as external edges. This approach demonstrated
that social network users had the power to conceal their
community from detection. However, the method is non-
deterministic, so its effectiveness varies depending on which
edges were selected in each round of simulation. The lack
of distinction between the best edges to add or remove also
makes it difficult for users to best select actions to conceal
their community.

Lastly, Nagaraja takes a different view of the problem
wherein an adversary is attempting to uncover the com-
munity structure of the entire network with a surveillance
strategy [38]. The work proposes several counter-strategies
to conceal communities with edge alterations. Nagaraja con-
cludes that these strategies work based on how they impact
the network’s modularity, without explicitly maximizing
for impact on modularity. The present enables this to be
explicitly maximized.

Here, we show that Modularity Vitality can be used to
efficiently perform community deception on the entire net-
work rather than a specific community. Rather than rewiring
edges, we remove all edges attached to nodes with the
highest modularity vitality. This has the benefit of keeping
maintaining network accuracy for links that are present,
but ultimately does change the degree distribution. In a
social media setting, this amounts to hiding which popular
accounts a user follows, rather than re-wiring individual
following relationships. We demonstrate the power of this
approach by performing community deception on a social
media communication network with 7.5 million nodes, and
130 million edges.

3 CALCULATING MODULARITY VITALITY

Newman’s community centrality measured a node’s po-
tential to contribute to modularity. To calculate the actual
contribution, we can calculate the modularity vitality: the
difference between the modularity of the original partition,
and the modularity of the partition after the removal of
a specified node. Given that community-aware centralities
are commonly evaluated using the effect of node removals,
modularity vitality seems to be a natural approach. Note

that once a node is removed, the network could be re-
grouped, and the group structure could potentially be quite
different. Once regrouping is considered, there is no closed-
form solution to what the new modularity would be, since
the maximization procedure would need to be re-run. Thus,
regrouping is typically not considered, and we do not con-
sider it here [25].

Modularity vitality is defined as:

VQ(G,C, i) = Q(G,C)−Q(G− {i},C− {i}). (8)

A naive computation of this expression is quite expensive.
Modularity itself has time complexity O(M). Thus, naively
recalculating this in order to calculate the modularity vital-
ity for all nodes has complexity O(MN). However, there is
an efficient way of updating modularities after the removal
of a node.

The modularity after the removal of node i can instead
be calculated using the following expression:

Q(G− {i},C− {i}) =

M internal − kinternal
i

M − ki
− 1

4 (M − ki)2
∑
γc∈C

(dc − hi,c)2
(9)

hi,c = kci + kiδ(c, ci). (10)

We will now derive this equation.

Theorem 3.1. If we remove node i from the graph G then the
new modularity of the new graph G− {i} can be written as:

Q(G− {i},C− {i}) =

M internal − kinternal
i

M − ki
− 1

4 (M − ki)2
∑
γc∈C

(dc − hi,c)2
(11)

hi,c = kci + kiδ(c, ci). (12)

The value hi,c measures the number of edges a node has to that
community, and if the node is a member of said community, its
degree is added. The degree must be added because dc double-
counts the number of internal links in a community.

Proof. The removal of node i from graph G results in a
new graph denoted by G − {i}. The same applies to the
community vector, which is denoted by C− {i}.

First, we re-write Modularity as given in Equation 1:

Q(G,C) =
1

2M

N∑
i,j=1

(
Ai,j −

1

2M
kikj

)
δ(ci, cj)

=
1

2M

∑
γ∈C

∑
vi,vj∈γ

(
Ai,j −

1

2M
kikj

)
=

1

2M

∑
γ∈C

∑
vi,vj∈γ

Ai,j︸ ︷︷ ︸
2M internal

− 1

4M2

∑
γ∈C

∑
vi,vj∈γ

kikj

=
M internal

M
− 1

4M2

∑
γ∈C

∑
vi,vj∈γ

kikj

=
M internal

M
− 1

4M2

∑
γ∈C

∑
vi∈γ

ki
∑
vj∈γ

kj
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Let
dc =

∑
vi∈γc

ki =
∑
vj∈γc

kj

Now can express modularity in terms of number of links
and total degrees of nodes:

Q(G,C) =
M internal

M
− 1

4M2

∑
γc∈C

d2c (13)

This form is easier to derive the new modularities from.
Equation 13 can then be applied to graph on graph G−

{i} to find the new modularity:

Q(G− {i},C− {i}) =

M internal − kinternal
i

M − ki
− 1

4 (M − ki)2
∑
γc∈C

d̃2i,c

Now to calculate d̃i,c we can break this down in two cases:

Case 1. If c 6= ci we have :

d̃i,c =
∑
vj∈γc

kj − kci

Case 2. If c = ci we have :

d̃i,c =
∑
vj∈γc

kj − kci − ki

Let :

hi,c = kci + kiδ(c, ci)

then finally we have:

d̃i,c = dc − hi,c

Giving us the final expression for the modularity once node
i is removed:

Q(G− {i},C− {i}) =

M internal − kinternal
i

M − ki
− 1

4 (M − ki)2
∑
γc∈C

(dc − hi,c)2

�

By looking at Equation 9, we observe that the only new
information needed to update modularity after removing a
node is contained in the node’s immediate neighborhood
and the vector of community degrees. The worst-case sce-
nario would be to calculate updated modularity for the
center node of a star-graph, which has degree M . When
Equation 9 is used, the time complexity of calculating the
new modularity becomes O(M + C). While this seems to
not be an improvement, the worst-case scenario is far worse
than the average case, since most node degrees are far less
than M . In fact, the calculation of Equation 9 for all nodes in
a network has time complexity of only O(M +NC). Given
that typically C � N , this is a major improvement over
the naive implementation’s complexity of O(MN). This
improvement allows for analysis of very large graphs for

which O(MN) operations could be prohibitively expensive
if not infeasible.

By studying modularity vitality, rather than just the
simple new modularity after a node is removed, it is easy to
identify which nodes are increasing modularity and which
are decreasing it. As Newman noted, “it is entirely pos-
sible for individual vertices to simultaneously make both
large positive and negative contributions to modularity”
[10]. A simplistic approach would be to add the absolute
value of the two, but Equation 8 balances them to see
which contribution prevails for each node. Since nodes
with positive modularity vitality are contributing positively
towards community structure, they can be thought of as
hubs within their community. Their removal decreases the
strength of their communities, thus decreasing modularity.
Conversely, nodes negatively contributing to group struc-
ture will have negative modularity vitality. Negative con-
tributions to group structure are facilitated through con-
nections between groups, so nodes with highly negative
modularity vitality are community bridges. Removing these
community bridges increases modularity. A measure which
does not have the issue of large positive and negative con-
tributions balancing out is explored in Appendix A, though
it does not perform as well as modularity vitality.

Like many previous measures, modularity vitality is cor-
related with degree. This correlation is intuitive: nodes with
many connections have the most potential to impact group
structure, either positively or negatively. It can be seen in the
new modularity equation: as node degree increases, the de-
nominator decreases, leading to increase in the magnitude
of modularity vitality. However, modularity vitality is more
complex, since it takes into account which groups a node
is connected to. Nodes connected to larger groups have a
bigger impact than those connected to smaller groups. This
mirrors Masuda’s measure, where a node’s importance is
based on the importance of its group and the group(s) it is
connected to. The difference here is that modularity vitality
measures a group’s importance with the number of internal
links, while Masuda’s uses the eigenvector centrality with
the group to group network.

4 METHODOLOGY

4.1 Fragmentation-Based Evaluation
As discussed in Section 2.4, evaluation based on network
fragmentation is similar to the SIR evaluation used in other
studies, like [6], [7], however is less expensive computation-
ally and is easier to interpret. Module-based attacks (MBA’s)
were tested in such a framework, where they were shown
to effectively fragment networks [19]. Again, fragmentation
σ is the size of the largest component after the attack,
divided by the original largest component. Fragmentation is
measured as a function of ρ, the fraction of nodes removed
in the attack: σ(ρ) =

Nρ
N . Similarly, fragmentation can be

looked at as a function of the fraction of edges removed,
η. Note that here we are only targeting nodes, not edges,
but the fraction of remaining edges is still an interesting
quantity to study, as we see in Section 5.3.

An immunization or fragmentation strategy’s effective-
ness depends on how many nodes are removed, as seen
by the notation σ(ρ). To measure the overall effectiveness,
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the fragmentation function can be integrated. The lower
the integral, the more effective the strategy, so we will
call this the cost function that we are trying to minimize:
Cρ =

∫
ρ σ(ρ)dρ. For comparison, the cost with respect to

edges can be of interest, though it is not directly being
optimized: Cη =

∫
η σ(η)dη.

Thus, we will evaluate all of the attack strategies in
Section 4.2, using C . We will do so in three parts: generated
networks, the PA road network, and a Twitter network
obtained from user to user conversations surrounding the
Canadian Election of 2019. Each part highlights different
aspects of the proposed method.

4.2 Attack Strategies

Attack strategies are the rules that govern which nodes are
to be immunized, or removed from the network. Generally
these strategies are independent of centrality measure, so
can be paired with any measure of a researcher’s choosing.
Holme outlined two strategies: initial and repeated [33].
In the initial attack, a centrality measure is calculated for
each of the nodes. Then, the top-k nodes are selected to be
attacked. The procedure is outlined in Algorithm 1.

Perhaps the biggest issue with the initial attack strat-
egy is its redundancy. After the first node is removed,
the centralities of the following nodes change. However,
these changes go un-detected in the initial attack model,
leading to the selection of nodes that are no longer in central
positions. This, to some extent, can happen due to random
effects of node and edge removal in a network. The extent to
which random removals impact centrality values and rank-
ings has been previously studied by Borgatti and others,
who find that the accuracy of centrality measures drops off
smoothly as the number of random changes to the graph
increases, though this effect is dependent on the network’s
topology [39], [40]. Perhaps more importantly, there are non-
random effects at play. It is known that certain central nodes
are responsible for the centrality of other nodes, and that this
can be measured with exogenous centrality [41].

The redundancy issue of the initial attack strategy is
resolved in the recomputed attack strategy wherein the cen-
tralities are recomputed after each node removal. The full
algorithm is shown in Algorithm 2. Though effective, the
recompute step adds scalability issues. For a centrality mea-
sure that takes O(M) time, the attack takes O(NM) time.
This means for expensive calculations like betweenness,
the recompute strategy will be intractable, O(N3 logN) for
weighted networks [34].

A more sophisticated strategy is given by da Cuhna et al,
called Module-Based-Attack (MBA) [19]. The authors find
that use of group structure leads to effective fragmentation.
Group-based structure is incorporated by only attacking
nodes which bridge communities. Further, only nodes in
the current largest component are attacked. While largest
component is recomputed, the centrality measures are not.
The full procedure is given in Algorithm 3, where

⊕
denotes append operation. While not as complex as the
recompute method, the update of the largest component
and node bridges makes the method significantly more
computationally expensive when compared to the simple
initial attack.

Algorithm 1: Initial Attack
Result: List of removed nodes L

1 L ← ∅;
2 k ← the number of nodes to remove;
3 S ← List of all nodes sorted by a

centrality measure (function);
4 while |L| < k do
5 τ ← top node in S;
6 L ← L ∪ τ ;
7 S ← S \ τ ;
8 end

Algorithm 2: Repeated or Recomputed
Attack

Result: List of removed nodes L
1 L ← ∅;
2 k ← the number of nodes to remove;
3 G← the initial graph;
4 while |L| < k do
5 S ← List of all nodes in G sorted by

a centrality measure (function);
6 τ ← top node in S;
7 L ← L ∪ τ ;
8 G← G \ τ ;
9 end

Thus, for small generated networks we take I, R, and
MBA. For the PA-Road Network and Twitter networks,
however, only the “initial” attack strategy is computed,
as it is the most scalable. These are combined with de-
gree as well as the previously discussed local community-
aware centrality measures: Masuda (Mas), Community-
Hub-Bridge (CHB), Modular-Centrality-Degree (WMC-D),
Adjusted-Modular-Centrality-Degree (AMC-D), and Degree
(Deg). We compare these existing approaches to modularity
vitality in two forms. First, we take the original modularity
vitality (MV), attacking from negative to positive, in order to
target community-bridges. Second, we consider the absolute
value of the modularity vitality (AMV), which targets nodes
based on their overall contribution to group structure, posi-
tive or negative. A third form was considered, where nodes
were attacked from positive to negative modularity vitality.
This hub-first strategy did performed poorly, and is omitted
from result tables to preserve readability.

5 NETWORK FRAGMENTATION

5.1 Generated Networks
First, we compared community-aware centralities using
generated networks. By using generated networks we can
repeat tests many times. We constructed modular networks
using the cellular network model, similar to that of Masuda
[25]. In this model, “cells” are random sized Erdős-Rényi
networks with high density, simulating clusters. Then, the
cell-to-cell network is also modeled as an Erdős-Rényi net-
work. When two cells are linked in the group-to-group
network, random nodes from each are selected and a link
is drawn between them. For this study, cellular networks
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Algorithm 3: Module-Based Attack
(MBA)

Result: List of removed nodes L
1 L ← ∅;
2 G← the initial graph;
3 B ← the set of nodes bridging

communities in G;
4 S ← List of all nodes in G sorted by a

centrality measure (function);
5 LC ← the set of nodes in the largest

component of G;
6 while |B ∩ LC| > 0 do
7 τ ← top node in S;
8 if τ ∈ B and τ ∈ LC then
9 G← G \ τ ;

10 LC ← the set of nodes in the
largest component of G;

11 B ← the set of nodes bridging
communities in G;

12 L ← L ∪ τ ;
13 S ← S \ τ ;
14 else
15 if τ /∈ B then
16 S ← S \ τ ;
17 else
18 S ← S

⊕
τ

19 end
20 end
21 end

were created using the parameters shown in Table 1. This
results in an unweighted, undirected random network with
community structure.

TABLE 1
Cellular Network Parameters. U(a, b) denotes the uniform random

distribution between numbers a and b; N (µ, σ2) denotes the normal
distribution with mean µ and variance σ2.

Variable Description

N = 1000 Number of nodes

Nc = U(10, 20) Number of cells

ni = N (N/Nc, Nc/5), Number of nodes per cell

pi = U(0.1, 0.25) Density of internal cell relationships

po = U(0, 0.5) Density of the cell-to-cell network

The eight previously discussed community-aware cen-
trality measures were paired with the three possible attack
schemes, initial, recomputed, and MBA, to give 24 attacks.
Each time a network was generated all 24 attacks were
performed on the network and the corresponding cost func-
tions Cρ and Cη were recorded. The average cost of the 24
attacks for 100 generated networks is given in Table 2. The
average modularity for these 100 networks when grouped
with Leiden grouping was 0.91. The modularity vitality at-
tack consistently outperforms all other attacks both in terms
of node cost and edge cost, suggesting that it is the best
community-aware centrality measure for this type of syn-

thetic network. The fact that attacking nodes with negative
modularity vitality is more effective than nodes that are high
in modularity vitality magnitude suggests that community
bridge nodes are more important than community hub
nodes in cellular networks. The success of the “adjusted”
modular-degree centrality provides further evidence of this,
since it places greater importance on community bridges,
while the original modular-degree focuses on hubs and does
not score as well.

5.2 PA-Road Network
One particularly well-suited application for community-
aware centrality measures is the analysis of large infras-
tructure networks. These networks typically have two prop-
erties: very high modularity and low maximum degree.
High modularity makes group-based approaches appropri-
ate. Low maximum degree often means that simple degree-
based attacks will be ineffective. Additionally, their large
size make effective approaches like MBA intractable, or at
least very costly. Instead, we show that initial-attacks with
community-aware centrality measures are very effective,
and that our modularity-based methods are the most effec-
tive by far.

As an example, we use the Pennsylvania Road Network
[42]. Roads are represented by edges, while intersections are
represented by nodes. This network has 1,088,092 nodes,
and 1,541,898 edges. When grouped with Leiden grouping
maximizing modularity, 499 clusters are obtained with a
modularity of 0.990. Its maximum degree is 18. The ex-
tremely high modularity and low maximum degree make
it an ideal candidate for community-aware centrality mea-
sures.

In Figure 1, we see the fragmentation as a function of
nodes and edges removed for each strategy. Here, we see
the largest component can be effectively brought to zero by
removing 1.6% of nodes with the highest modularity vitality
values. Removing only positive-valued nodes and removing
nodes based on the absolute value of their modularity vital-
ity value give very similar results. The quantitative results,
as measured by Cρ and Cη are given in Table 3.

Additionally, we show the plot as a function of edges
removed, for the same strategies. The edge plot shows that
while modularity vitality fragments the networks best given
a number of nodes, it is also most efficient in terms of edges.

With just a degree-based attack, it would appear that
the Pennsylvania road network is robust. In fact, the
community-aware centrality methods show that it is quite
fragile. Using an I-MV attack, the network can be almost
completely fragmented by targeting only 1.6% percent of
nodes, bringing the largest component down to less than
1% of its original size. This improves over the previous best
measure, modular-degree, by a factor of over 8.5.

5.3 Canadian Election Twitter Network
Another relevant application of community-aware centrality
is social media networks. Since social media has become
so embedded in everyday life, scalable tools to understand
it are essential. Given the increasing polarization of online
discussion, as described in concepts like filter bubbles,
it is not enough to know what actors are important in
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TABLE 2
Results for attacks on the generated cellular networks. The values shown are the average over 100 simulations. Methods introduced in this work

are on the left of the double column. The best results are emboldened.

Method MV AMV AMC-D Mas CHB WMC-D Deg

InitialCρ 0.165 0.211 0.169 0.198 0.383 0.381 0.347
InitialCη 0.247 0.308 0.268 0.293 0.576 0.599 0.578

MBACρ 0.086 0.087 0.088 0.090 0.101 0.103 0.100
MBACη 0.157 0.162 0.173 0.162 0.211 0.219 0.216

RecomputedCρ 0.107 0.126 0.130 0.132 0.331 0.337 0.309
RecomputedCη 0.188 0.205 0.221 0.205 0.608 0.616 0.586

0.0 0.2 0.4 0.6 0.8 1.0
ρ

0.0

0.2

0.4

0.6

0.8

1.0

σ

Initial Attack on PA Roads

(a) Fragmentation by nodes removed.

0.0 0.2 0.4 0.6 0.8 1.0
η

0.0

0.2

0.4

0.6

0.8

1.0

σ

Initial Attack on PA Roads
MV
AMV
AMC-D
Mas
CHB
WMC-D
Deg

(b) Fragmentation by edges removed.

Fig. 1. Fragmentation of the PA-Road Network. Results for modularity-vitality, absolute modularity-vitality, and adjusted modular-centrality are
extremely similar, so overlap on both figures. The legend in (b) also applies to the plot in (a), as well as both plots in Figure 2.

general. Instead, it is necessary to understand what actors
are important within and between key online communi-
ties. Community-aware centralities make this a measurable
problem.

To study the effectiveness of our community-aware cen-
trality measures we again use network fragmentation, due
to its connection with diffusion. Diffusion on social media is
an important phenomena to understand as a way to combat
misinformation, among other things. Users who fragment
the network when removed are those who have the most
power to spread information.

For this study, we use the network created from Twitter
data collected during 2019 Canadian federal election. The
goal was to obtain a user-to-user communication network
where users were active in political discussion. First, we
used a keyword search of Twitter’s API to collect tweets
related to the Canadian Election during the month of Octo-
ber. From here, the unique users were recorded, giving a list
of users active in political discussion. While a user to user
network could be constructed with this data, many links
would be missing, since only tweets with our keywords can
be used. To construct a more complete network, Twitter’s
API was used to scrape the timelines of all users in our
list. This new collection was then truncated to the week

of the election. Finally, the all-communication graph was
computed from this dataset, where link weights are the
sum of the mentions, retweets, and quotes. The “Election
Week” network, has 7,523,125 nodes, and 130,086,491 links.
When grouped with Leiden grouping, 557 communities
were discovered, with a modularity of 0.691.

Figure 2 shows the fragmentation results on the election
week network. Again, the quantitative results are given in
Table 3. The Adjusted-Modular-Degree measure and the
classical degree measure effectively tie for node-based ef-
ficiency.

The structure and properties between the PA Roads
network and the Election Week network are very different.
This difference is reflected in Figure 2. Perhaps most striking
is how poorly the modularity vitality method performs in
terms of ρ. While other methods fragment the network
removing 10-30% of nodes, the positive modularity vitality
method does not fragment the network until nearly all
nodes are removed.

At first this seems like a failure of the modularity vi-
tality method. However, inspection of Figure 2 (b), shows
otherwise. In terms of links, the modularity vitality method
is actually the most efficient attack strategy. This counter-
intuitive result occurs because none of the methods are very
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(a) Fragmentation by nodes removed.
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Fig. 2. Fragmentation of the Election-Week Network. The legend can be found in Figure 1(b).

effective at fragmenting the network. The largest component
is small when removing 10-30% of nodes using the other
methods, but those nodes account for over 95% of the
networks links. The difference in bridge-first Modularity-
Vitality attacks and all others, however, does highlight the
fact that networks with extremely high-degree nodes will
require mixed or hub-first approaches to be efficiently frag-
mented. Even accounting for this aspect of the network, the
election week network exhibits extreme robustness to these
types of attacks.

5.4 Discussion

We see that modularity-based methods were very effective
in all three studies. The modularity vitality method shows
that the PA Road network is over 8.5 times as fragile as
could be seen with existing measures. While the standard
modularity vitality attack was effective on the PA-Road
network, it was not on the Election week network. However,
using the absolute-value of modularity vitality resolves the
issue. This implies that attacking community-bridges is not
enough. By taking the absolute value, both community-
bridges and community-hubs are attacked, leading to a
method that is more robust across networks, even if it might
not be the top-performer for specific networks.

As much as the values of a centrality are important, often
the ranking of node centralities takes precedence. This is the
case with network attacks studied in this work. So to go
beyond the fragmentation results, the Kendall correlation of
each method was calculated to compare the resulting node-
rankings [28]. Figures 3 and 4 show the correlations for the
Road network and the Election network, respectively. These
correlations allow us to see the similarity of centrality rank-
ing, regardless of the effectiveness of said ranking. Though
more clearly in Figure 3, we see that the existing degree-
based metrics are highly correlated. This is intuitive, as they
are all alterations on a weighted degree. While connecting
certain groups might give a node a higher or lower score
depending on the metric, a low degree usually leads to a
low score.

MV AMV Mas AMC-D CHB WMC-D Deg

MV

AMV

Mas

AMC-D

CHB

WMC-D

Deg

1 -0.93 0.043 -0.49 -0.04 -0.37 -0.54

-0.93 1 0.043 0.55 0.024 0.36 0.56

0.043 0.043 1 0.043 -0.0071-0.0081 0.017

-0.49 0.55 0.043 1 0.31 0.18 0.64

-0.04 0.024 -0.0071 0.31 1 0.6 0.63

-0.37 0.36 -0.0081 0.18 0.6 1 0.81
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Fig. 3. Kendall-Tau Correlation of the “initial” attack strategies on the PA
Roads Network.

MV AMV Mas AMC-D CHB WMC-D Deg

MV
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1 -0.53 0.24 -0.069 -0.097 -0.27 -0.24

-0.53 1 0.35 0.5 0.39 0.65 0.69

0.24 0.35 1 0.61 0.38 0.47 0.57

-0.069 0.5 0.61 1 0.57 0.53 0.78

-0.097 0.39 0.38 0.57 1 0.53 0.62

-0.27 0.65 0.47 0.53 0.53 1 0.89

-0.24 0.69 0.57 0.78 0.62 0.89 1
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Fig. 4. Kendall-Tau Correlation of the “initial” attack strategies on the
Election Week Network.

Absolute modularity vitality has moderate correlation
to the existing methods. Most notably, it has strongest
connections to the modular-degree centrality. However, the
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TABLE 3
Results for initial attacks on the PA-Road Network and the Canadian-Election Twitter Network. Methods introduced in this work are on the left of

the double column. The best results are emboldened.

Network MV AMV AMC-D Mas CHB WMC-D Deg

PA-RoadsCρ 0.013 0.016 0.015 0.167 0.162 0.120 0.122
PA-RoadsCη 0.021 0.026 0.026 0.295 0.281 0.262 0.305

ElectionCρ 0.430 0.032 0.022 0.067 0.029 0.023 0.022
ElectionCη 0.635 0.673 0.656 0.732 0.667 0.654 0.651

standard modularity vitality has lower correlation. The com-
bination of these observations show that modularity vitality
is leveraging similar information to modular-centrality ap-
plied to degree, while giving those values a sign indicating
the type of central role they are playing: hub or bridge.
The correlation between modularity vitality and its absolute
value give further information about a network’s structure.
In the road network, the strong negative correlation (-0.93)
indicates that most nodes are community hubs, not bridges.
The same is seen with the election week network though
to a lesser extent since the correlation is -0.53. This result
is consistent with the networks’ high modularities, and that
the road network’s modularity is much higher than election
week’s. This added information is a key contribution of the
work, and will be of use for deep dives into network data.

Lastly, we see that our adjusted version of the modular-
degree centrality gives improvements over the original
modular-centrality, and that it has stronger correlations to
the modularity-based methods. Based on these results, it
is possible that the generalized modular-centrality should
also be adjusted to favor bridges. In general, it seems that
bridge-favoring methods have performed best in our exper-
iments. This is intuitive from a diffusion perspective. If a
network is highly modular, the groups themselves can act
as silos to contain what is being diffused if the community-
bridge nodes are removed. For the road network, modular-
centrality points to areas that need extra redundancy to
create a more robust transportation network.

From the social network, we see that targeting bridges is
not always enough. In the presence of community bridges
and large community hubs, an approach that attacks both is
necessary. The absolute modularity vitality method attacks
both, but the election network was robust to even this attack.

In the context of misinformation on social media, both
users acting as hubs within fringe communities and users
attempting to bridge communities play key roles. Further,
network robustness is both a strength and a weakness in
this context. A robust communication network means many
users have the power to spread information. This allows for
distributed power of information but also means that user-
based interventions to hamper the spread of misinformation
will be ineffective. It is commonly stated that network met-
rics may identify key points where misinformation diffusion
can be stopped [24]. However, we find that not to be the
case. The networks are too robust to have a number of points
that control diffusion. This may explain why disinformation
tends to repeatedly resurface [24]. While identifying key
users spreading misinformation is useful for characterizing

efforts to share fake news, we must look beyond user-based
interventions to actually fight its spread.

6 COMMUNITY DECEPTION

The goal of community deception is to hide a community
from detection algorithms [35], [36]. The motivation behind
this is typically to protect privacy. Sensitive user data is
often over-mined, and network community information is
one of the ways in which identifiable information can be
discovered. The idea, then, is to alter the network such that
community information is harmed, as measured through
modularity of the original grouping on the altered network.

Previously, modularity vitality attacks were used to max-
imize fragmentation. However, fragmentation is only a by-
product of the modularity vitality attack. The attack’s true
objective is to maximize modularity. As shown in Figure 5,
the same attack used to fragment the Election Week network
increases its modularity. In fact, all of the fragmentation
methods increase modularity. By attacking nodes which
bridge communities, the communities become more sepa-
rated and modularity increases. The figure shows that the
different attacks give similar change in modularity, though
the vitality approach is most efficient, since it explicitly
increases modularity.

For community deception, the power of the modularity
vitality method is the ability to select community hubs
instead of bridges. Since community deception seeks to
minimize modularity, the attack can simply be reversed by
selecting the node with the highest positive modularity vi-
tality. Thus, a greedy solution to the node-based community
deception problem is a recomputed, reversed, modularity
vitality attack. A faster approximation to this is the initial,
reversed, modularity vitality attack.

Previous methods considered edge rewirings. In prac-
tice, this may be difficult or problematic, since links in the
altered network may or may not truly exist. An alternate
approach is to remove a small subset of the nodes. While
the altered network will have less links than the original, all
links in the altered network are links in the original network.
By leveraging the modularity equation itself, we can select
the nodes guaranteed to minimize modularity in a scalable
way. As a demonstration of this, community-deception was
performed on the Canadian Election network, and the re-
sults are given in Figure 6, for both the fast approximation
of the greedy approach. For networks of this scale, even the
greedy approach is very expensive. Using the initial attack
strategy, modularity can be dropped from approximately
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Fig. 5. Changes in modularity due to the fragmentation attacks, all using the initial strategy.

0.7 to just over 0.4 by removing less than 2% of nodes, as
shown in Figure 6 (a). However, Figure 6 (b) shows that
this comes at a cost of 45% of the nodes edges. Modularity
can be decreased further, though with diminishing returns.
Modularity levels out when about 8% of nodes and 50% of
edges are removed, resulting in a final modularity of 0.36,
which is a 49% decrease.

We know from the modularity vitality equation that this
strategy is attacking hubs, and this is seen by the fact that the
first 2% of nodes targeted are accounting for 45% of links.
Intuitively, this suggests that a user’s connections to Twitter
accounts that are popular within a community reveal that
user’s identity as a community member. If this identity is
to be protected, then hiding these key hubs, as measured
through modularity vitality, is the most effective strategy.

This presents a dilemma to social media users wishing to
conceal their online community: the most effective strategy
is to un-friend or un-follow the community’s leaders, which
would undoubtedly harm the community itself. The extent
of this harm is dependent on the platform. On Twitter, for
example, users may interact without a following relation-
ship. On other platforms, like Facebook, the extent of these
interactions is more limited. This leaves it up to the social
media companies to protect their users by allowing them
to hide their affiliations to other accounts, or at least to
community leaders.

A choice must be made when performing community-
deception: At what point is does the cost of deleting network
data outweigh the benefit of decreased modularity? For this
case, if only nodes are of interest, there is only a very small
price to pay to decrease modularity by 41%. If edges are
important to consider, the cost is higher. This is only an ap-
proximation of the greedy approach. The greedy approach,
recomputed reversed modularity vitality attack, will likely
achieve even better results. A study of this comparison
on smaller networks along with non-greedy alternatives
is left for future work. Additionally, this type of attack
could be combined with the previously studied edge re-
wiring attacks to give even obscure communities even more
effectively. Lastly, explicit modularity maximization through

node removal could have interesting applications, such as
node filtering to obtain more interpretable groups. This, too,
is left for future work.

7 CONCLUSION

Both centrality measures and community detection are core
research areas in Network Science. At the intersection of
these areas, community-aware centrality measures attempt
to quantify how central nodes are given a network par-
tition. Though the areas are closely related, the current
community-aware centralities are not strongly tied to com-
munity theory. Here, we examine modularity vitality, which
measures the change in modularity of a network and its
partition if a node were to be removed. Thus, modularity
vitality measures each node’s individual contribution to
group structure. This measure is directly derived from the
modularity equation, giving the measure a strong link to
community detection theory. We derive a scalable method
of calculating modularity vitality, which improves over the
naive method usually by a factor of N , allowing for the
analysis of massive networks.

Unlike existing measures, however, modularity vitality
not only quantifies how important a node is, but in which
way it is important. Once groups are introduced, nodes can
take on two central roles: hubs within their community, and
bridges between communities. The role is encoded in the
sign of modularity vitality; nodes with negative values are
bridges, while positive-valued nodes are hubs.

Modularity vitality was tested in three settings: gen-
erated cellular networks, the Pennsylvania Road Net-
work, and a Twitter network capturing conversation
around the Canadian Election of 2019. In these tests, we
saw that modularity-based methods outperformed existing
community-aware centralities as measured through net-
work fragmentation. Our results show that the Pennsylvania
Road network is over 8.5 times more fragile than the exist-
ing measures would have concluded, and that community
bridges play a more important role than community-hubs.

Further, we saw that the social media conversation net-
work is very robust, and that both community-hubs and
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Fig. 6. Community deception on the Election-Week Network using the initial attack strategy.

community-bridges play important roles in that robustness.
Additionally, the presence of extremely high-degree nodes
lead to bridge-first methods performing worst, since high-
degree nodes are typically well-grouped. Robust communi-
cation is aligned with Social Media’s business interests, since
they give many users the potential to “go-viral,” encour-
aging engagement. The specific source of this robustness
remains an area of future research, though the balance of
nodes with positive and negative modularity vitality nodes
suggests that the presence of many community bridges may
be a factor. This theory is in agreement with the results
on the PA network, which has very few bridges and is ex-
tremely fragile. A robust communication network suggests
that user-based interventions are not an effective strategy
to fight the spread of misinformation, since an extreme
intervention like user-removal only has a small impact on
potential diffusion.

Many prior community-aware centralities give prefer-
ence to community-bridges over community-hubs. Using
modularity-vitality without taking the absolute value also
targets bridges instead of hubs. Based on this, we include
a modified version of Ghalmane’s generalized community-
aware centrality measure where bridges are favored instead
of hubs. This alternate version of their community-aware
centrality when applied with degree performed better in our
experiments. Further studies could explore if this change is
an improvement when combined with classical centrality
measures other than degree.

Lastly, we recognize that modularity vitality can be used
as a greedy solution to the community-deception problem.
Community-deception seeks to remove nodes or edges to
maximally reduce modularity, which could be important for
privacy protection in data distribution. While previous work
uses a genetic algorithm to select nodes or edges which
may reduce modularity, modularity vitality can be used to
select the node that will maximally decrease modularity.
Recomputing modularity vitality at each removal provides
a greedy solution to the community-deception problem, but
we use the faster approximation: only calculating modular-
ity vitality once. While the genetic algorithm could scale

to networks with two hundred nodes, the approximation
of the greedy method scales to networks with millions of
nodes and hundreds of millions of links, as demonstrated
on the election week network. Through this demonstration
we see that modularity can be decreased by 41% while only
removing less than 2% of nodes, but this comes at a cost of
45% of the edges. Still, community-deception is a combina-
torial optimization problem, so there are almost definitely
better solutions. Going forward, the greedy approach using
modularity vitality may be a useful baseline.

The findings suggest that the most effective strategy
currently available to users attempting to protect their com-
munity identity is to remove their connections to commu-
nity leaders. This strategy clearly will negatively impact the
community itself, leaving users with little options to protect
their privacy. It is up to social media companies to protect
this privacy by allowing users to hide their connections.

We have demonstrated that modularity vitality is a pow-
erful method of finding nodes that bridge communities or
are hubs within their communities at scale. Modularity is
but one of many cluster evaluation functions. Exploration of
vitalities of these other functions could give an alternative
view of nodal contributions to community structure. Com-
munity quality vitalities, and community-aware centralities
more generally have many applications to areas such as in-
frastructure robustness, traffic improvement, immunization,
and social media. Deeper dives into these application areas
using the techniques proposed here could be fruitful areas
of future research.
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APPENDIX A
COMMUNITY-DEGREE

Though the signed aspect of modularity vitality is quite
useful, it is possible that a node has high positive and
negative components of modularity in Equation 9, resulting
in a modularity vitality near zero. These nodes may be
particularly important for networks with low modularity.
We can adjust Equation 9 to obtain a measure which credits
nodes for hub and bridge behavior. By changing the sub-
traction of hi,c to addition, this effect is achieved. After this
adjustment, there is no need for a separate internal term,
making the final measure:

CDi =
1

4 (M − ki)2
∑
c∈C

(dc + hi,c)
2 (14)

Again, attachment to large groups is favored over attach-
ment to small groups. Since this is just weighting the de-
gree, we will call it Community-Degree (CD). The previous
results including this measure are shown in Tables 4-7, and
in Figures 7 and 8.

MV AMV Mas AMC-D CD CHB WMC-D Deg

MV

AMV

Mas

AMC-D

CD

CHB

WMC-D

Deg

1 -0.93 0.043 -0.49 -0.083 -0.04 -0.37 -0.54

-0.93 1 0.043 0.55 0.1 0.024 0.36 0.56

0.043 0.043 1 0.043 0.016-0.0071-0.00810.017

-0.49 0.55 0.043 1 0.41 0.31 0.18 0.64

-0.083 0.1 0.016 0.41 1 0.83 0.71 0.77

-0.04 0.024-0.0071 0.31 0.83 1 0.6 0.63

-0.37 0.36 -0.0081 0.18 0.71 0.6 1 0.81

-0.54 0.56 0.017 0.64 0.77 0.63 0.81 1

PA Roads Correlation

−1.00

−0.75

−0.50

−0.25

0.00

0.25

0.50

0.75

1.00
Ke

nd
al
l-T

au
 C
or
re
la
tio

n

Fig. 7. Extended version of Figure 3 to include Community-Degree.
Kendall-Tau Correlation of the “initial” attack strategies on the PA Roads
Network.
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Fig. 8. Extended version of Figure 4 to include Community-Degree.
Kendall-Tau Correlation of the “initial” attack strategies on the PA Roads
Network.

Community-Degree is highly correlated with degree,
and so performs similarly. Based on these results, it seems

that the signed centrality is more effective while also con-
veying more information.

APPENDIX B
RESULTS ON OTHER GENERATED NETWORKS

For completeness, networks lacking strong group structure
were generated. Scale-free networks were generated using
the Barabási-Albert model using parameters n = 1000, m =
8, and γ = 1.5. Over the 100 iterations tested the average
modularity from Leiden grouping was 0.196. The results are
given in Table 6.

Erdős-Rényi networks with parameters n = 1000, p =
0.015, were also created. These parameters were chosen
to give similar density to the cellular networks previously
studied. Networks were generated until a connected net-
work was reached. Over the 100 connected networks, the
average modularity from Leiden grouping was 0.240. The
results are given in Table 7.

The results across network types are similar. First, none
of the attacks are very effective. Both the node and edge cost
are higher than that seen for the Election network, which
was robust. With that said, the degree and modular-degree
attacks were consistently the most efficient in terms of
nodes. This is intuitive; without more meaningful structure,
the most effective strategy is to look at the node with the
most edges. This results in a high edge-based cost, however.
So we see that modularity vitality actually performs best
in terms of edge-cost. Lastly, we see that the adjusted-
modular degree that we proposed performs similarly to
the original. Adjusted measure performs much better on
highly modular networks, while performing similarly on
less modular networks.
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TABLE 4
Extended version of Table 2 to include Community-Degree. Results for attacks on the generated cellular networks. The values shown are the

average over 100 simulations. Methods introduced in this work are on the left of the double column. The best results are emboldened.

Method MV AMV CD AMC-D Mas CHB WMC-D Deg

InitialCρ 0.165 0.211 0.361 0.169 0.198 0.383 0.381 0.347
InitialCη 0.247 0.308 0.560 0.268 0.293 0.576 0.599 0.578

MBACρ 0.086 0.087 0.099 0.088 0.090 0.101 0.103 0.100
MBACη 0.157 0.162 0.210 0.173 0.162 0.211 0.219 0.216

RecomputedCρ 0.107 0.126 0.320 0.130 0.132 0.331 0.337 0.309
RecomputedCη 0.188 0.205 0.599 0.221 0.205 0.608 0.616 0.586

TABLE 5
Extended version of Table 3 to include Community-Degree. Results for initial attacks on the PA-Road Network and the Canadian-Election Twitter

Network. Methods introduced in this work are on the left of the double column. The best results are emboldened.

Network MV AMV CD AMC-D Mas CHB WMC-D Deg

PA-RoadsCρ 0.013 0.016 0.126 0.015 0.167 0.162 0.120 0.122
PA-RoadsCη 0.021 0.026 0.264 0.026 0.295 0.281 0.262 0.305

ElectionCρ 0.430 0.032 0.023 0.022 0.067 0.029 0.023 0.022
ElectionCη 0.636 0.673 0.661 0.656 0.732 0.667 0.654 0.651

TABLE 6
Results for attacks on the generated scale free networks. The values shown are the average over 100 simulations. Methods introduced in this work

are on the left of the double column. The best results by method are emboldened. The best results overall are marked with a star.

Method MV AMV CD AMC-D Mas CHB MC-D Deg
Initial Cρ 0.483 0.424 0.263 0.256 0.337 0.361 0.254 0.243
Initial Cη 0.834∗ 0.856 0.882 0.881 0.884 0.879 0.881 0.880
MBA Cρ 0.430 0.364 0.243 0.239 0.273 0.292 0.242 0.235
MBA Cη 0.839 0.859 0.880 0.880 0.881 0.877 0.880 0.880
Recomputed Cρ 0.296 0.305 0.224 0.227 0.256 0.258 0.223∗ 0.223∗
Recomputed Cη 0.878 0.878 0.880 0.880 0.882 0.881 0.880 0.880

TABLE 7
Results for attacks on the generated Erdős-Rényi networks. The values shown are the average over 100 simulations. Methods introduced in this

work are on the left of the double column. The best results by method are emboldened. The best results overall are marked with a star.

Method MV AMV CD AMC-D Mas CHB WMC-D Deg
Initial Cρ 0.493 0.491 0.479 0.475 0.487 0.492 0.473 0.472
Initial Cη 0.683 0.681 0.715 0.723 0.705 0.675∗ 0.724 0.728
MBA Cρ 0.483 0.484 0.469 0.466 0.475 0.485 0.464 0.462
MBA Cη 0.683 0.681 0.714 0.722 0.705 0.675∗ 0.724 0.727
Recomputed Cρ 0.461 0.482 0.429∗ 0.454 0.452 0.446 0.430 0.430
Recomputed Cη 0.700 0.681 0.739 0.739 0.729 0.718 0.738 0.740


